Vaccination with recombinant Lactococcus lactis expressing HA1-IgY Fc fusion protein supplies protecting mucosal immunity towards H9N2 avian influenza virus in chickens | Virology Journal

0
43


  • Alexander DJ. Report on avian influenza within the Japanese Hemisphere throughout 1997–2002. Avian Dis. 2003;47(Suppl 3):792–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Senne DA. Avian influenza within the Western Hemisphere together with the Pacific Islands and Australia. Avian Dis. 2003;47(Suppl 3):798–805.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bano S, Naeem Ok, Malik SA. Analysis of pathogenic potential of avian influenza virus serotype H9N2 in chickens. Avian Dis. 2003;47(Suppl 3):817–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kishida N, Sakoda Y, Eto M, Sunaga Y, Kida H. Co-infection of Staphylococcus aureus or Haemophilus paragallinarum exacerbates H9N2 influenza A virus an infection in chickens. Arch Virol. 2004;11:149.


    Google Scholar
     

  • Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, et al. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology. 2000;2:267.


    Google Scholar
     

  • Shanmuganatham Ok, Feeroz MM, Jones-Engel L, Smith GJ, Fourment M, Walker D, et al. Antigenic and molecular characterization of avian influenza A(H9N2) viruses, Bangladesh. Emerg Infect Dis. 2013;9:19.


    Google Scholar
     

  • Zhao G, Gu X, Lu X, Pan J, Duan Z, Zhao Ok, et al. Novel reassortant extremely pathogenic H5N2 avian influenza viruses in poultry in China. PLoS ONE. 2012;9:7.


    Google Scholar
     

  • Gareau MG, Sherman PM, Walker WA. Probiotics and the intestine microbiota in intestinal well being and illness. Nat Rev Gastroenterol Hepatol. 2010;9:7.


    Google Scholar
     

  • Bermúdez-Humarán LG. Lactococcus lactis as a reside vector for mucosal supply of therapeutic proteins. Hum Vaccin. 2009;4:5.


    Google Scholar
     

  • Pouwels PH, Leer RJ, Shaw M, Heijne den Bak-Glashouwer MJ, Tielen FD, Smit E, et al. Lactic acid micro organism as antigen supply automobiles for oral immunization functions. Int J Meals Microbiol. 1998;2:41.


    Google Scholar
     

  • Walker RI. New methods for utilizing mucosal vaccination to attain more practical immunization. Vaccine. 1994;5:12.


    Google Scholar
     

  • Marelli B, Perez AR, Banchio C, de Mendoza D, Magni C. Oral immunization with reside Lactococcus lactis expressing rotavirus VP8 subunit induces particular immune response in mice. J Virol Strategies. 2011;1:175.


    Google Scholar
     

  • Dieye Y, Hoekman AJ, Clier F, Juillard V, Boot HJ, Piard JC. Capacity of Lactococcus lactis to export viral capsid antigens: a vital step for growth of reside vaccines. Appl Environ Microbiol. 2003;12:69.


    Google Scholar
     

  • Wells JM, Mercenier A. Mucosal supply of therapeutic and prophylactic molecules utilizing lactic acid micro organism. Nat Rev Microbiol. 2008;5:6.


    Google Scholar
     

  • Sha Z, Shang H, Miao Y, Huang J, Niu X, Chen R, et al. Recombinant Lactococcus Lactis expressing M1-HA2 fusion protein supplies protecting mucosal immunity towards H9N2 Avian influenza virus in chickens. Entrance Vet Sci. 2020;7:153.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jefferis R. Glycosylation as a technique to enhance antibody-based therapeutics. Nat Rev Drug Discov. 2009;3:8.


    Google Scholar
     

  • Schwab I, Nimmerjahn F. Intravenous immunoglobulin remedy: How does IgG modulate the immune system? Nat Rev Immunol. 2013;3:13.


    Google Scholar
     

  • Amigorena S, Bonnerot C. Fc receptors for IgG and antigen presentation on MHC class I and sophistication II molecules. Semin Immunol. 1999;6:11.


    Google Scholar
     

  • Solar H, Zhang J, Chen F, Chen X, Zhou Z, Wang H. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr Polym. 2015;121:388–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong W, Zhang H, Huang H, Zhou J, Hu L, Lian A, et al. Hen IgY Fc linked to Bordetella avium ompA and Taishan Pinus massoniana pollen polysaccharide adjuvant enhances macrophage operate and particular immune responses. Entrance Microbiol. 2016;7:1708.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Shan S, Wang S, Zhang H, Ma L, Hu L, et al. Fused IgY Fc and polysaccharide adjuvant enhanced the immune impact of the recombinant VP2 and VP5 subunits-a prospect for enchancment of infectious Bursal illness virus subunit vaccine. Entrance Microbiol. 2017;8:2258.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida M, Kobayashi Ok, Kuo TT, Bry L, Glickman JN, Claypool SM, et al. Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal micro organism. J Clin Make investments. 2006;8:116.


    Google Scholar
     

  • Rath T, Baker Ok, Pyzik M, Blumberg RS. Regulation of immune responses by the neonatal fc receptor and its therapeutic implications. Entrance Immunol. 2015;5:664.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rath T, Kuo TT, Baker Ok, Qiao SW, Kobayashi Ok, Yoshida M, et al. The immunologic features of the neonatal Fc receptor for IgG. J Clin Immunol. 2013;33(Suppl 1):9–17.

    Article 
    CAS 

    Google Scholar
     

  • Aaen KH, Anthi AK, Sandlie I, Nilsen J, Mester S, Andersen JT. The neonatal Fc receptor in mucosal immune regulation. Scand J Immunol. 2021;2:93.


    Google Scholar
     

  • West AP Jr, Herr AB, Bjorkman PJ. The hen yolk sac IgY receptor, a purposeful equal of the mammalian MHC-related Fc receptor, is a phospholipase A2 receptor homolog. Immunity. 2004;5:20.


    Google Scholar
     

  • Kobayashi Ok, Qiao SW, Yoshida M, Baker Ok, Lencer WI, Blumberg RS. An FcRn-dependent position for anti-flagellin immunoglobulin G in pathogenesis of colitis in mice. Gastroenterology. 2009;5:137.


    Google Scholar
     

  • Tian Z, Zhang X. Progress on analysis of hen IgY antibody-FcRY receptor mixture and switch. J Recept Sign Transduct Res. 2012;5:32.


    Google Scholar
     

  • Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA. Construction and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science. 2006;5772:312.


    Google Scholar
     

  • Chen HY, Shang YH, Yao HX, Cui BA, Zhang HY, Wang ZX, et al. Immune responses of chickens inoculated with a recombinant fowlpox vaccine coexpressing HA of H9N2 avain influenza virus and hen IL-18. Antiviral Res. 2011;1:91.


    Google Scholar
     

  • Tutykhina IL, Sedova ES, Gribova IY, Ivanova TI, Vasilev LA, Rutovskaya MV, et al. Passive immunization with a recombinant adenovirus expressing an HA (H5)-specific single-domain antibody protects mice from deadly influenza an infection. Antiviral Res. 2013;3:97.


    Google Scholar
     

  • Ekiert DC, Friesen RH, Bhabha G, Kwaks T, Jongeneelen M, Yu W, et al. A extremely conserved neutralizing epitope on group 2 influenza A viruses. Science. 2011;6044:333.


    Google Scholar
     

  • Krammer F, Pica N, Hai R, Tan GS, Palese P. Hemagglutinin stalk-reactive antibodies are boosted following sequential an infection with seasonal and pandemic H1N1 influenza virus in mice. J Virol. 2012;19:86.


    Google Scholar
     

  • Yang WT, Yang GL, Yang X, Shonyela SM, Zhao L, Jiang YL, et al. Recombinant Lactobacillus plantarum expressing HA2 antigen elicits protecting immunity towards H9N2 avian influenza virus in chickens. Appl Microbiol Biotechnol. 2017;23–24:101.


    Google Scholar
     

  • Haan L, Verweij WR, Holtrop M, Manufacturers R, van Scharrenburg GJ, Palache AM, et al. Nasal or intramuscular immunization of mice with influenza subunit antigen and the B subunit of Escherichia coli heat-labile toxin induces IgA- or IgG-mediated protecting mucosal immunity. Vaccine. 2001;20–22:19.


    Google Scholar
     

  • Dabaghian M, Latify AM, Tebianian M, Nili H, Ranjbar AR, Mirjalili A, et al. Vaccination with recombinant 4 × M2e.HSP70c fusion protein as a common vaccine candidate enhances each humoral and cell-mediated immune responses and reduces viral shedding towards experimental problem of H9N2 influenza in chickens. Vet Microbiol. 2014;174:1–2.

    Article 

    Google Scholar
     

  • Dabaghian M, Latifi AM, Tebianian M, Dabaghian F, Ebrahimi SM. A truncated C-terminal fragment of Mycobacterium tuberculosis HSP70 enhances cell-mediated immune response and longevity of the full IgG to influenza A virus M2e protein in mice. Antiviral Res. 2015;120:23–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shojadoost B, Kulkarni RR, Yitbarek A, Laursen A, Taha-Abdelaziz Ok, Negash Alkie T, et al. Dietary selenium supplementation enhances antiviral immunity in chickens challenged with low pathogenic avian influenza virus subtype H9N2. Vet Immunol Immunopathol. 2019;207:62–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spackman E, Gelb J Jr, Preskenis LA, Ladman BS, Pope CR, Pantin-Jackwood MJ, et al. The pathogenesis of low pathogenicity H7 avian influenza viruses in chickens, geese and turkeys. Virol J. 2010;7:331.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Gall-Reculé G, Cherbonnel M, Pelotte N, Blanchard P, Morin Y, Jestin V. Significance of a prime-boost DNA/protein vaccination to guard chickens towards low-pathogenic H7 avian influenza an infection. Avian Dis. 2007;51(Suppl 1):490–4.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang RH, Li PY, Xu MJ, Wang CL, Li CH, Gao JP, et al. Molecular characterization and pathogenesis of H9N2 avian influenza virus remoted from a racing pigeon. Vet Microbiol. 2020;246: 108747.

    Article 
    PubMed 

    Google Scholar
     

  • Lin YJ, Deng MC, Wu SH, Chen YL, Cheng HC, Chang CY, et al. Baculovirus-derived hemagglutinin vaccine protects chickens from deadly homologous virus H5N1 problem. J Vet Med Sci. 2008;11:70.


    Google Scholar
     

  • Qiao C, Jiang Y, Tian G, Wang X, Li C, Xin X, et al. Recombinant fowlpox virus vector-based vaccine fully protects chickens from H5N1 avian influenza virus. Antiviral Res. 2009;3:81.


    Google Scholar
     

  • Pan Z, Zhang X, Geng S, Cheng N, Solar L, Liu B, et al. Priming with a DNA vaccine delivered by attenuated Salmonella typhimurium and boosting with a killed vaccine confers safety of chickens towards an infection with the H9 subtype of avian influenza virus. Vaccine. 2009;7:27.


    Google Scholar
     

  • Oh HL, Akerström S, Shen S, Bereczky S, Karlberg H, Klingström J, Lal SK, Mirazimi A, Tan YJ. An antibody towards a novel and conserved epitope within the hemagglutinin 1 subunit neutralizes quite a few H5N1 influenza viruses. J Virol. 2010;16:84.


    Google Scholar
     

  • Khantour AE, Houadfi ME, Nassik S, Tligui NS, Mellouli FE, Sikht FZ, Ducatez MF, Soulaymani A, Fellahi S. Protecting efficacy analysis of 4 inactivated industrial vaccines towards low pathogenic Avian influenza H9N2 virus beneath experimental circumstances in broiler chickens. Avian Dis. 2021;65:351–7.

    Article 
    PubMed 

    Google Scholar
     

  • Motamedi Sedeh F, Khalili I, Wijewardana V, Unger H, Shawrang P, Behgar M, Moosavi SM, Arbabi A, Hosseini SM. Improved complete gamma irradiated Avian influenza subtype H9N2 virus vaccine utilizing trehalose and optimization of vaccination regime on broiler hen. Entrance Vet Sci. 2022;9: 907369.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dabaghian M, Latify AM, Tebianian M, Nili H, Ranjbar AR, Mirjalili A, Mohammadi M, Banihashemi R, Ebrahimi SM. Vaccination with recombinant 4 × M2e.HSP70c fusion protein as a common vaccine candidate enhances each humoral and cell-mediated immune responses and reduces viral shedding towards experimental problem of H9N2 influenza in chickens. Vet Microbiol. 2014;174:116–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gan L, Tian Y, Zhao Y, Shan XQ, Zhou W, Xia BB, Chen J, Wang ML, Zhao J. Enhancing immunogenicity and protecting efficacy of inactivated avian influenza H9N2vaccine with recombinant hen IFN-α in hen. Vet Microbiol. 2019;234:77–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahman MM, Uyangaa E, Han YW, Kim SB, Kim JH, Choi JY, Eo SK. Enhancement of Th1-biased protecting immunity towards avian influenza H9N2 virus by way of oral co-administration of attenuated Salmonella enterica serovar Typhimurium expressing hen interferon-α and interleukin-18 together with an inactivated vaccine. BMC Vet Res. 2012;8:105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park JK, Lee DH, Cho CH, Yuk SS, To EO, Kwon JH, Noh JY, Kim BY, Choi SW, Shim BS, Track MK, Lee JB, Park SY, Choi IS, Track CS. Supplementation of oil-based inactivated H9N2 vaccine with M2e antigen enhances resistance towards heterologous H9N2 avian influenza virus an infection. Vet Microbiol. 2014;169:211–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bortolami A, Mazzetto E, Kangethe RT, Wijewardana V, Barbato M, Porfiri L, Maniero S, Mazzacan E, Budai J, Marciano S, Panzarin V, Terregino C, Bonfante F, Cattoli G. Protecting efficacy of H9N2 Avian influenza vaccines inactivated by ionizing radiation strategies administered by the parenteral or mucosal routes. Entrance Vet Sci. 2022;9: 916108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here