Therapeutic methods for COVID-19: progress and classes discovered

0
54


  • Holmes, E. C. et al. The origins of SARS-CoV-2: a important assessment. Cell 184, 4848–4856 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, N. et al. A novel coronavirus from sufferers with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolgin, E. Pan-coronavirus vaccine pipeline takes type. Nat. Rev. Drug Discov. 21, 324–326 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhary, N., Weissman, D. & Whitehead, Okay. A. mRNA vaccines for infectious ailments: rules, supply and medical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Clercq, E. & Li, G. Accredited antiviral medicine over the previous 50 years. Clin. Microbiol. Rev. 29, 695–747 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G. & De Clercq, E. in Antiviral Discovery for Extremely Pathogenic Rising Viruses (eds Muñoz-Fontela, C. & Delgado, R.) 1–27 (Royal Society of Chemistry, 2022).

  • Li, G., Jing, X., Zhang, P. & De Clercq, E. in Encyclopedia of Virology (Fourth Version) (eds Bamford, D. & Zuckerman, M.) Ch. 1, 121–130 (Educational Press, 2021).

  • Meganck, R. M. & Baric, R. S. Creating therapeutic approaches for twenty-first-century rising infectious viral ailments. Nat. Med. 27, 401–410 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufmann, S. H. E., Dorhoi, A., Hotchkiss, R. S. & Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov. 17, 35–56 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baggen, J., Vanstreels, E., Jansen, S. & Daelemans, D. Mobile host components for SARS-CoV-2 an infection. Nat. Microbiol. 6, 1219–1232 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, S. X. et al. Thrombocytopathy and endotheliopathy: essential contributors to COVID-19 thromboinflammation. Nat. Rev. Cardiol. 18, 194–209 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pantaleo, G., Correia, B., Fenwick, C., Joo, V. S. & Perez, L. Antibodies to fight viral infections: growth methods and progress. Nat. Rev. Drug Discov. 21, 676–696 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boike, L., Henning, N. J. & Nomura, D. Okay. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 21, 881–898 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, H. et al. Sensitivity to vaccines, therapeutic antibodies, and viral entry inhibitors and advances to counter the SARS-CoV-2 Omicron variant. Clin. Microbiol. Rev. 35, e0001422 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tao, Okay. et al. SARS-CoV-2 antiviral remedy. Clin. Microbiol. Rev. 34, e0010921 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Broadly neutralizing antibodies to SARS-CoV-2 and different human coronaviruses. Nat. Rev. Immunol. 23, 189–199 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tregoning, J. S., Flight, Okay. E., Higham, S. L., Wang, Z. & Pierce, B. F. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 21, 626–636 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drain, P. Okay. Fast diagnostic testing for SARS-CoV-2. N. Engl. J. Med. 386, 264–272 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peeling, R. W., Heymann, D. L., Teo, Y. Y. & Garcia, P. J. Diagnostics for COVID-19: transferring from pandemic response to manage. Lancet 399, 757–768 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamers, M. M. & Haagmans, B. L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 20, 270–284 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • V’Kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gupta, A. et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 26, 1017–1032 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nalbandian, A. et al. Publish-acute COVID-19 syndrome. Nat. Med. 27, 601–615 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diamond, M. S. & Kanneganti, T. D. Innate immunity: the primary line of protection towards SARS-CoV-2. Nat. Immunol. 23, 165–176 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minkoff, J. M. & tenOever, B. Innate immune evasion methods of SARS-CoV-2. Nat. Rev. Microbiol. 21, 178–194 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, H. & Rao, Z. Structural biology of SARS-CoV-2 and implications for therapeutic growth. Nat. Rev. Microbiol. 19, 685–700 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malone, B., Urakova, N., Snijder, E. J. & Campbell, E. A. Constructions and features of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat. Rev. Mol. Cell Biol. 23, 21–39 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeGrace, M. M. et al. Defining the danger of SARS-CoV-2 variants on immune safety. Nature 605, 640–652 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J., Lai, S., Gao, G. F. & Shi, W. The emergence, genomic range and world unfold of SARS-CoV-2. Nature 600, 408–418 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S. & Yuen, Okay. Y. Coronaviruses — drug discovery and therapeutic choices. Nat. Rev. Drug. Discov. 15, 327–347 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, L., Su, S., Yang, H. & Jiang, S. Antivirals with widespread targets towards extremely pathogenic viruses. Cell 184, 1604–1620 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, P. et al. Virus-receptor interactions of glycosylated SARS-CoV-2 spike and human ACE2 receptor. Cell Host Microbe 28, 586–601.e586 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wrapp, D. et al. Cryo-EM construction of the 2019-nCoV spike within the prefusion conformation. Science 367, 1260–1263 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, T. et al. Cryo-EM constructions of SARS-CoV-2 spike with out and with ACE2 reveal a pH-dependent swap to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe 28, 867–879.e865 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullard, A. FDA approves one centesimal monoclonal antibody product. Nat. Rev. Drug Discov. 20, 491–495 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhimraj, A. et al. Infectious Ailments Society of America tips on the remedy and administration of sufferers with COVID-19. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac724 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cox, M. et al. SARS-CoV-2 variant evasion of monoclonal antibodies primarily based on in vitro research. Nat. Rev. Microbiol. 21, 112–124 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saunders, Okay. O. Conceptual approaches to modulating antibody effector features and circulation half-life. Entrance. Immunol. 10, 1296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavatory, Y. M. et al. The SARS-CoV-2 monoclonal antibody mixture, AZD7442, is protecting in non-human primates and has an prolonged half-life in people. Sci. Transl. Med. 14, eabl8124 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Focosi, D. et al. COVID-19 convalescent plasma and medical trials: understanding conflicting outcomes. Clin. Microbiol. Rev. 35, e0020021 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Senefeld, J. W., Casadevall, A. & Joyner, M. J. Convalescent plasma to ship therapeutic antibodies towards COVID-19. Developments Mol. Med. 28, 435–436 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Troxel, A. B. et al. Affiliation of convalescent plasma remedy with medical standing in sufferers hospitalized with COVID-19: a meta-analysis. JAMA Netw. Open. 5, e2147331 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millat-Martinez, P. et al. Potential particular person affected person knowledge meta-analysis of two randomized trials on convalescent plasma for COVID-19 outpatients. Nat. Commun. 13, 2583 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, W. S., Wheatley, A. Okay., Kent, S. J. & DeKosky, B. J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 5, 1185–1191 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody constructions inform therapeutic methods. Nature 588, 682–687 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piccoli, L. et al. Mapping neutralizing and immunodominant websites on the SARS-CoV-2 spike receptor-binding area by structure-guided high-resolution serology. Cell 183, 1024–1042.e1021 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, P. C. et al. Neutralizing monoclonal antibodies for remedy of COVID-19. Nat. Rev. Immunol. 21, 382–393 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Putting antibody evasion manifested by the omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Omicron escapes nearly all of current SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Restoration Collaborative Group. Casirivimab and imdevimab in sufferers admitted to hospital with COVID-19 (RECOVERY): a randomised, managed, open-label, platform trial. Lancet 399, 665–676 (2022).

    Article 

    Google Scholar
     

  • Activ-Tico Bamlanivimab Examine Group. Responses to a neutralizing monoclonal antibody for hospitalized sufferers with COVID-19 in response to baseline antibody and antigen ranges: a randomized managed trial. Ann. Intern. Med. 175, 234–243 (2021).

    Article 

    Google Scholar
     

  • Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, L. M. & Burton, D. R. Passive immunotherapy of viral infections: ‘super-antibodies’ enter the fray. Nat. Rev. Immunol. 18, 297–308 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Y. Q. et al. Lipid nanoparticle-encapsulated mRNA antibody gives long-term safety towards SARS-CoV-2 in mice and hamsters. Cell Res. 32, 375–382 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, S. et al. Fusion mechanism of 2019-nCoV and fusion inhibitors concentrating on HR1 area in spike protein. Cell Mol. Immunol. 17, 765–767 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Interplay between heptad repeat 1 and a pair of areas in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363, 938–947 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, L. et al. Construction-based discovery of Center East respiratory syndrome coronavirus fusion inhibitor. Nat. Commun. 5, 3067 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, S., Lin, Okay., Strick, N. & Neurath, A. R. HIV-1 inhibition by a peptide. Nature 365, 113 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan, Q. et al. Pan-coronavirus fusion inhibitors to fight COVID-19 and different rising coronavirus infectious ailments. J. Med. Virol. 95, e28143 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Developments in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davenport, A. P., Scully, C. C. G., de Graaf, C., Brown, A. J. H. & Maguire, J. J. Advances in therapeutic peptides concentrating on G protein-coupled receptors. Nat. Rev. Drug Discov. 19, 389–413 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • ACTIV-3/TICO Examine Group. Efficacy and security of ensovibep for adults hospitalized with COVID-19: a randomized managed trial. Ann. Intern. Med. 175, 1266–1274 (2022).

    Article 

    Google Scholar
     

  • Shin, D. et al. Papain-like protease regulates SARS-CoV-2 viral unfold and innate immunity. Nature 587, 657–662 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rut, W. et al. Exercise profiling and crystal constructions of inhibitor-bound SARS-CoV-2 papain-like protease: a framework for anti-COVID-19 drug design. Sci. Adv. 6, eabd4596 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Z. et al. Design of SARS-CoV-2 PLpro inhibitors for COVID-19 antiviral remedy leveraging binding cooperativity. J. Med. Chem. 65, 2940–2955 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, S. et al. Concentrating on papain-like protease for broad-spectrum coronavirus inhibition. Protein Cell 13, 940–953 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sargsyan, Okay. et al. Multi-targeting of useful cysteines in a number of conserved SARS-CoV-2 domains by clinically secure Zn-ejectors. Chem. Sci. 11, 9904–9909 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, H., Hu, Y., Jadhav, P., Tan, B. & Wang, J. Progress and challenges in concentrating on the SARS-CoV-2 papain-like protease. J. Med. Chem. 65, 7561–7580 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratia, Okay. et al. Extreme acute respiratory syndrome coronavirus papain-like protease: construction of a viral deubiquitinating enzyme. Proc. Natl Acad. Sci. USA 103, 5717–5722 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrigan, J. A., Jacq, X., Martin, N. M. & Jackson, S. P. Deubiquitylating enzymes and drug discovery: rising alternatives. Nat. Rev. Drug Discov. 17, 57–78 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Okay. et al. Views on SARS-CoV-2 fundamental protease inhibitors. J. Med. Chem. 64, 16922–16955 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidak, E., Javorsek, U., Vizovisek, M. & Turk, B. Cysteine cathepsins and their extracellular roles: shaping the microenvironment. Cells 8, 264 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Crystal construction of SARS-CoV-2 fundamental protease gives a foundation for design of improved alpha-ketoamide inhibitors. Science 368, 409–412 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper, M. S. et al. Diastereomeric decision yields extremely potent inhibitor of SARS-CoV-2 fundamental protease. J. Med. Chem. 65, 13328–13342 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, Z. et al. Construction of M(professional) from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, A. Okay., Osswald, H. L. & Prato, G. Latest progress within the growth of HIV-1 protease inhibitors for the remedy of HIV/AIDS. J. Med. Chem. 59, 5172–5208 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. Crystal construction of SARS-CoV-2 fundamental protease in advanced with protease inhibitor PF-07321332. Protein Cell 13, 689–693 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owen, D. R. et al. An oral SARS-CoV-2 M(professional) inhibitor medical candidate for the remedy of COVID-19. Science 374, 1586–1593 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greasley, S. E. et al. Structural foundation for the in vitro efficacy of nirmatrelvir towards SARS-CoV-2 variants. J. Biol. Chem. 298, 101972 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uraki, R. et al. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature 607, 119–127 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malla, T. R. et al. Penicillin derivatives inhibit the SARS-CoV-2 fundamental protease by response with its nucleophilic cysteine. J. Med. Chem. 65, 7682–7696 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amporndanai, Okay. et al. Inhibition mechanism of SARS-CoV-2 fundamental protease by ebselen and its derivatives. Nat. Commun. 12, 3061 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, A. Okay. et al. Indole chloropyridinyl ester-derived SARS-CoV-2 3 CLpro inhibitors: enzyme inhibition, antiviral efficacy, structure-activity relationship, and X-ray structural research. J. Med. Chem. 64, 14702–14714 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dampalla, C. S. et al. Construction-guided design of potent spirocyclic inhibitors of extreme acute respiratory syndrome coronavirus-2 3C-like protease. J. Med. Chem. 65, 7818–7832 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, H. et al. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nat. Commun. 12, 3623 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unoh, Y. et al. Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor medical candidate for treating COVID-19. J. Med. Chem. 65, 6499–6512 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukae, H. et al. Efficacy and security of ensitrelvir in sufferers with mild-to-moderate COVID-19: the part 2b a part of a randomized, placebo-controlled, part 2/3 research. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac933 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffman, R. L. et al. Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic remedy of COVID-19. J. Med. Chem. 63, 12725–12747 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rut, W. et al. SARS-CoV-2 M(professional) inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol. 17, 222–228 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammond, J. et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N. Engl. J. Med. 386, 1397–1408 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, A. S., Caubel, P. & Rusnak, J. M., EPIC-HR Investigators. Nirmatrelvir-ritonavir and viral load rebound in Covid-19. N. Engl. J. Med. 387, 1047–1049 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iketani, S. et al. A number of pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature 613, 558–564 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lou, Z. & Rao, Z. The lifetime of SARS-CoV-2 inside cells: replication-transcription advanced meeting and performance. Annu. Rev. Biochem. 91, 381–401 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yan, L. et al. Cryo-EM construction of an prolonged SARS-CoV-2 replication and transcription advanced reveals an intermediate state in cap synthesis. Cell 184, 184–193.e110 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slanina, H. et al. Coronavirus replication-transcription advanced: very important and selective NMPylation of a conserved web site in nsp9 by the NiRAN-RdRp subunit. Proc. Natl Acad. Sci. USA 118, e2022310118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, A. P. et al. The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme. Nucleic Acids Res. 49, 13019–13030 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shannon, A. et al. A twin mechanism of motion of AT-527 towards SARS-CoV-2 polymerase. Nat. Commun. 13, 621 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dwivedy, A. et al. Characterization of the NiRAN area from RNA-dependent RNA polymerase gives insights into a possible therapeutic goal towards SARS-CoV-2. PLoS Comput. Biol. 17, e1009384 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G., Wang, Y. & De Clercq, E. Accredited HIV reverse transcriptase inhibitors prior to now decade. Acta Pharm. Sin. B 14, 1567–1590 (2022).

    Article 

    Google Scholar
     

  • Cihlar, T. & Mackman, R. L. Journey of remdesivir from the inhibition of hepatitis C virus to the remedy of COVID-19. Antivir. Ther. 27, 13596535221082773 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cho, A. et al. Synthesis and antiviral exercise of a sequence of 1’-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg. Med. Chem. Lett. 22, 2705–2707 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegel, D. et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the remedy of Ebola and rising viruses. J. Med. Chem. 60, 1648–1661 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aleissa, M. M. et al. New views on antimicrobial brokers: remdesivir remedy for COVID-19. Antimicrob. Brokers Chemother. 65, e01814–e01820 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulangu, S. et al. A randomized, managed trial of Ebola virus illness therapeutics. N. Engl. J. Med. 381, 2293–2303 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malin, J. J., Suarez, I., Priesner, V., Fatkenheuer, G. & Rybniker, J. Remdesivir towards COVID-19 and different viral ailments. Clin. Microbiol. Rev. 34, e00162-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon, C. J. et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from extreme acute respiratory syndrome coronavirus 2 with excessive efficiency. J. Biol. Chem. 295, 6785–6797 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kokic, G. et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 12, 279 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO Solidarity Trial Consortium. Remdesivir and three different medicine for hospitalised sufferers with COVID-19: last outcomes of the WHO Solidarity randomised trial and up to date meta-analyses. Lancet 399, 1941–1953 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Ader, F. et al. Remdesivir plus commonplace of care versus commonplace of care alone for the remedy of sufferers admitted to hospital with COVID-19 (DisCoVeRy): a part 3, randomised, managed, open-label trial. Lancet Infect. Dis. 22, 209–221 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qaseem, A. et al. Ought to remdesivir be used for the remedy of sufferers with COVID-19? Fast, dwelling observe factors from the American School of Physicians (Model 2). Ann. Intern. Med. 174, 673–679 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, J. & Wang, Z. Can remdesivir and its guardian nucleoside GS-441524 be potential oral medicine? An in vitro and in vivo DMPK evaluation. Acta Pharm. Sin. B 11, 1607–1616 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Z. et al. VV116 versus nirmatrelvir–ritonavir for oral remedy of Covid-19. N. Engl. J. Med. 388, 406–417 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toots, M. et al. Characterization of orally efficacious influenza drug with excessive resistance barrier in ferrets and human airway epithelia. Sci. Transl. Med. 11, eaax5866 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janion, C. & Glickman, B. W. N4-hydroxycytidine: a mutagen particular for AT to GC transitions. Mutat. Res. 72, 43–47 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheahan, T. P. et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and a number of coronaviruses in mice. Sci. Transl. Med. 12, eabb5883 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wahl, A. et al. SARS-CoV-2 an infection is successfully handled and prevented by EIDD-2801. Nature 591, 451–457 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayk Bernal, A. et al. Molnupiravir for oral remedy of Covid-19 in nonhospitalized sufferers. N. Engl. J. Med. 386, 509–520 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Butler, C. C. et al. Molnupiravir plus traditional care versus traditional care alone as early remedy for adults with COVID-19 at elevated threat of antagonistic outcomes (PANORAMIC): an open-label, platform-adaptive randomised managed trial. Lancet 401, 281–293 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yip, T. C. F. et al. Influence of using oral antiviral brokers on the danger of hospitalization in neighborhood COVID-19 sufferers. Clin. Infect. Dis. 76, e26–e33 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kabinger, F. et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol. 28, 740–746 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanstrom, R. & Schinazi, R. F. Deadly mutagenesis as an antiviral technique. Science 375, 497–498 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gordon, C. J., Tchesnokov, E. P., Schinazi, R. F. & Gotte, M. Molnupiravir promotes SARS-CoV-2 mutagenesis through the RNA template. J. Biol. Chem. 297, 100770 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, S. et al. β-d-N4-hydroxycytidine inhibits SARS-CoV-2 by deadly mutagenesis however can also be mutagenic to mammalian cells. J. Infect. Dis. 224, 415–419 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shannon, A. et al. Fast incorporation of favipiravir by the quick and permissive viral RNA polymerase advanced leads to SARS-CoV-2 deadly mutagenesis. Nat. Commun. 11, 4682 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perales, C. et al. The rising influence of deadly mutagenesis of viruses. Future Med. Chem. 11, 1645–1657 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furuta, Y. et al. T-705 (favipiravir) and associated compounds: novel broad-spectrum inhibitors of RNA viral infections. Antivir. Res. 82, 95–102 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naydenova, Okay. et al. Construction of the SARS-CoV-2 RNA-dependent RNA polymerase within the presence of favipiravir-RTP. Proc. Natl Acad. Sci. USA 118, e2021946118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaptein, S. J. F. et al. Favipiravir at excessive doses has potent antiviral exercise in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks exercise. Proc. Natl Acad. Sci. USA 117, 26955–26965 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosaeed, M. et al. Efficacy of favipiravir in adults with delicate COVID-19: a randomized, double-blind, multicentre, placebo-controlled medical trial. Clin. Microbiol. Infect. 28, 602–608 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golan, Y. et al. Favipiravir in sufferers with early mild-to-moderate COVID-19: a randomized managed trial. Clin. Infect. Dis. 76, e10–e17 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Holubar, M. et al. Favipiravir for remedy of outpatients with asymptomatic or uncomplicated COVID-19: a double-blind randomized, placebo-controlled, part 2 trial. Clin. Infect. Dis. 75, 1883–1892 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, T. H. et al. Favipiravir pharmacokinetics in Ebola-infected sufferers of the JIKI trial reveals concentrations decrease than focused. PLoS Negl. Trop. Dis. 11, e0005389 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett, R. P. et al. Sangivamycin is extremely efficient towards SARS-CoV-2 in vitro and has favorable drug properties. JCI Perception 7, e153165 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, W. et al. Structural foundation for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nat. Struct. Mol. Biol. 28, 319–325 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiedemar, N., Hauser, D. A. & Maser, P. 100 years of suramin. Antimicrob. Brokers Chemother. 64, e01168-19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Structural foundation for helicase-polymerase coupling within the SARS-CoV-2 replication-transcription advanced. Cell 182, 1560–1573.e1513 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, J. A. et al. Construction, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat. Commun. 12, 4848 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Squeglia, F., Romano, M., Ruggiero, A., Maga, G. & Berisio, R. Host DDX helicases as doable SARS-CoV-2 proviral components: a structural overview of their hijacking by a number of viral proteins. Entrance. Chem. 8, 602162 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gege, C. & Kleymann, G. Helicase-primase inhibitors from Medshine Discovery Inc. (WO2018/127207 and WO2020/007355) for the remedy of herpes simplex virus infections – construction proposal for Phaeno Therapeutics drug candidate HN0037. Knowledgeable Opin. Ther. Pat. 32, 933–937 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. Structural foundation of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science 373, 1142–1146 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, L. et al. Coupling of N7-methyltransferase and three′–5′ exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell 184, 3474–3485.e3411 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baddock, H. T. et al. Characterization of the SARS-CoV-2 ExoN (nsp14ExoN-nsp10) advanced: implications for its function in viral genome stability and inhibitor identification. Nucleic Acids Res. 50, 1484–1500 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferron, F. et al. Structural and molecular foundation of mismatch correction and ribavirin excision from coronavirus RNA. Proc. Natl Acad. Sci. USA 115, E162–E171 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nencka, R. et al. Coronaviral RNA-methyltransferases: operate, construction and inhibition. Nucleic Acids Res. 50, 635–650 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed-Belkacem, R. et al. Potent Inhibition of SARS-CoV-2 NSP14 N7-methyltransferase by sulfonamide-based bisubstrate analogues. J. Med. Chem. 65, 6231–6249 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pillon, M. C. et al. Cryo-EM constructions of the SARS-CoV-2 endoribonuclease Nsp15 reveal perception into nuclease specificity and dynamics. Nat. Commun. 12, 636 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. et al. Crystal construction of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci. 29, 1596–1605 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. et al. Tipiracil binds to uridine web site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Commun. Biol. 4, 193 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viswanathan, T. et al. A metallic ion orients SARS-CoV-2 mRNA to make sure correct 2’-O methylation of its first nucleotide. Nat. Commun. 12, 3287 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bobileva, O. et al. Potent SARS-CoV-2 mRNA Cap methyltransferase inhibitors by bioisosteric alternative of methionine in SAM cosubstrate. ACS Med. Chem. Lett. 12, 1102–1107 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergant, V. et al. Attenuation of SARS-CoV-2 replication and related irritation by concomitant concentrating on of viral and host cap 2′-O-ribose methyltransferases. EMBO J. 41, e111608 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lhuissier, E. et al. Analysis of the influence of S-adenosylmethionine-dependent methyltransferase inhibitor, 3-deazaneplanocin A, on tissue damage and cognitive operate in mice. Oncotarget 9, 20698–20708 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cubuk, J. et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and part separates with RNA. Nat. Commun. 12, 1936 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Concentrating on liquid-liquid part separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS exercise. Nat. Cell Biol. 23, 718–732 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, W., Zheng, Y., Zeng, X., He, B. & Cheng, W. Structural biology of SARS-CoV-2: open the door for novel therapies. Sign Transduct. Goal. Ther. 7, 26 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D. X., Fung, T. S., Chong, Okay. Okay., Shukla, A. & Hilgenfeld, R. Accent proteins of SARS-CoV and different coronaviruses. Antivir. Res. 109, 97–109 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vora, S. M. et al. Concentrating on stem-loop 1 of the SARS-CoV-2 5’ UTR to suppress viral translation and Nsp1 evasion. Proc. Natl Acad. Sci. USA 119, e2117198119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ambike, S. et al. Concentrating on genomic SARS-CoV-2 RNA with siRNAs permits environment friendly inhibition of viral replication and unfold. Nucleic Acids Res. 50, 333–349 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, Y. C. et al. A siRNA targets and inhibits a broad vary of SARS-CoV-2 infections together with Delta variant. EMBO Mol. Med. 14, e15298 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni, J. A. et al. The present panorama of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Hingrat, Q. et al. Ibalizumab reveals in-vitro exercise towards group A and group B HIV-2 medical isolates. AIDS 36, 1055–1060 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Millet, J. Okay., Jaimes, J. A. & Whittaker, G. R. Molecular range of coronavirus host cell entry receptors. FEMS Microbiol. Rev. 45, fuaa057 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, R. et al. Structural foundation for the popularity of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian, J. & Li, Z. Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharm. Sin. B 11, 1–12 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karoyan, P. et al. Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells an infection. Commun. Biol. 4, 197 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monteil, V. et al. Scientific grade ACE2 as a common agent to dam SARS-CoV-2 variants. EMBO Mol. Med. 14, e15230 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, Y. H. et al. Inhibition of ACE2-spike interplay by an ACE2 binder suppresses SARS-CoV-2 entry. Angew. Chem. Int. Ed. 61, e202115695 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hoffmann, M. et al. SARS-CoV-2 cell entry depends upon ACE2 and TMPRSS2 and is blocked by a clinically confirmed protease inhibitor. Cell 181, 271–280.e278 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koch, J. et al. TMPRSS2 expression dictates the entry route utilized by SARS-CoV-2 to contaminate host cells. EMBO J. 40, e107821 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jocher, G. et al. ADAM10 and ADAM17 promote SARS-CoV-2 cell entry and spike protein-mediated lung cell fusion. EMBO Rep. 23, e54305 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Y. W. et al. Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus manufacturing and cytopathic results. Cell Rep. 33, 108254 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laporte, M. et al. The SARS-CoV-2 and different human coronavirus spike proteins are fine-tuned in the direction of temperature and proteases of the human airways. PLoS Pathog. 17, e1009500 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peacock, T. P. et al. The furin cleavage web site within the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol. 6, 899–909 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hui, Okay. P. Y. et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature 603, 715–720 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng, B. et al. Altered TMPRSS2 utilization by SARS-CoV-2 Omicron impacts tropism and fusogenicity. Nature 603, 706–714 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Okay., Meyerholz, D. Okay., Bartlett, J. A. & McCray, P. B. Jr The TMPRSS2 inhibitor nafamostat reduces SARS-CoV-2 pulmonary an infection in mouse fashions of COVID-19. mBio 12, e0097021 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Brevini, T. et al. FXR inhibition could defend from SARS-CoV-2 an infection by decreasing ACE2. Nature 615, 134–142 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samelson, A. J. et al. BRD2 inhibition blocks SARS-CoV-2 an infection by decreasing transcription of the host cell receptor ACE2. Nat. Cell Biol. 24, 24–34 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, H. et al. Coronaviruses exploit a number cysteine-aspartic protease for replication. Nature 609, 785–792 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Geng, J. et al. CD147 antibody particularly and successfully inhibits an infection and cytokine storm of SARS-CoV-2 and its variants delta, alpha, beta, and gamma. Sign. Transduct. Goal. Ther. 6, 347 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, Okay. M. et al. Plitidepsin has potent preclinical efficacy towards SARS-CoV-2 by concentrating on the host protein eEF1A. Science 371, 926–931 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Concentrating on the coronavirus nucleocapsid protein by GSK-3 inhibition. Proc. Natl Acad. Sci. USA 118, e2113401118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braga, L. et al. Medicine that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature 594, 88–93 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnette, Okay. G. et al. Oral Sabizabulin for high-risk, hospitalized adults with Covid-19: interim evaluation. NEJM Evid. 1, EVIDoa2200145 (2022).

    Article 

    Google Scholar
     

  • Bian, H. et al. Meplazumab in hospitalized adults with extreme COVID-19 (DEFLECT): a multicenter, seamless part 2/3, randomized, third-party double-blind medical trial. Sign. Transduct. Goal. Ther. 8, 46 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tay, M. Z., Poh, C. M., Renia, L., MacAry, P. A. & Ng, L. F. P. The trinity of COVID-19: immunity, irritation and intervention. Nat. Rev. Immunol. 20, 363–374 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merad, M., Blish, C. A., Sallusto, F. & Iwasaki, A. The immunology and immunopathology of COVID-19. Science 375, 1122–1127 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, A. et al. A dwelling WHO guideline on medicine for covid-19. BMJ 370, m3379 (2020).

    PubMed 

    Google Scholar
     

  • van de Veerdonk, F. L. et al. A information to immunotherapy for COVID-19. Nat. Med. 28, 39–50 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17, 233–247 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hardy, R. S., Raza, Okay. & Cooper, M. S. Therapeutic glucocorticoids: mechanisms of actions in rheumatic ailments. Nat. Rev. Rheumatol. 16, 133–144 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sinha, S. et al. Dexamethasone modulates immature neutrophils and interferon programming in extreme COVID-19. Nat. Med. 28, 201–211 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J., Miyazaki, Okay., Shah, P., Kozai, L. & Kewcharoen, J. Affiliation between mineralocorticoid receptor antagonist and mortality in SARS-CoV-2 sufferers: a scientific assessment and meta-analysis. Healthcare 10, 645 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The RECOVERY Collaborative Group. Dexamethasone in hospitalized sufferers with Covid-19. N. Engl. J. Med. 384, 693–704 (2021).

    Article 

    Google Scholar
     

  • Alunno, A. et al. 2021 replace of the EULAR factors to think about on using immunomodulatory therapies in COVID-19. Ann. Rheum. Dis. 81, 34–40 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolfe, C. R. et al. Baricitinib versus dexamethasone for adults hospitalised with COVID-19 (ACTT-4): a randomised, double-blind, double placebo-controlled trial. Lancet Respir. Med. 10, 888–899 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, L. M. et al. Inhaled budesonide for COVID-19 in folks at excessive threat of problems locally within the UK (PRINCIPLE): a randomised, managed, open-label, adaptive platform trial. Lancet 398, 843–855 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramakrishnan, S. et al. Inhaled budesonide within the remedy of early COVID-19 (STOIC): a part 2, open-label, randomised managed trial. Lancet Respir. Med. 9, 763–772 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clemency, B. M. et al. Efficacy of inhaled ciclesonide for outpatient remedy of adolescents and adults with symptomatic COVID-19: a randomized medical trial. JAMA Intern. Med. 182, 42–49 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ezer, N. et al. Inhaled and intranasal ciclesonide for the remedy of Covid-19 in grownup outpatients: CONTAIN part II randomised managed trial. BMJ 375, e068060 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. A sensible information to the monitoring and administration of the problems of systemic corticosteroid remedy. Allergy Bronchial asthma Clin. Immunol. 9, 30 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matthay, M. A. & Thompson, B. T. Dexamethasone in hospitalised sufferers with COVID-19: addressing uncertainties. Lancet Respir. Med. 8, 1170–1172 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philips, R. L. et al. The JAK–STAT pathway at 30: a lot discovered, rather more to do. Cell 185, 3857–3876 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stebbing, J. et al. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to cut back morbidity and mortality. Sci. Adv. 7, eabe4724 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bronte, V. et al. Baricitinib restrains the immune dysregulation in sufferers with extreme COVID-19. J. Clin. Make investments. 130, 6409–6416 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RECOVERY Collaborative Group. Baricitinib in sufferers admitted to hospital with COVID-19 (RECOVERY): a randomised, managed, open-label, platform trial and up to date meta-analysis. Lancet 400, 359–368 (2022).

    Article 

    Google Scholar
     

  • Marconi, V. C. et al. Efficacy and security of baricitinib for the remedy of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled part 3 trial. Lancet Respir. Med. 9, 1407–1418 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalil, A. C. et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. N. Engl. J. Med. 384, 795–807 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guimaraes, P. O. et al. Tofacitinib in sufferers hospitalized with Covid-19 pneumonia. N. Engl. J. Med. 385, 406–415 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, B. et al. SARS-CoV-2 drives JAK1/2-dependent native complement hyperactivation. Sci. Immunol. 6, eabg0833 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leisman, D. E. et al. Cytokine elevation in extreme and important COVID-19: a speedy systematic assessment, meta-analysis, and comparability with different inflammatory syndromes. Lancet Respir. Med. 8, 1233–1244 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RECOVERY Collaborative Group. Tocilizumab in sufferers admitted to hospital with COVID-19 (RECOVERY): a randomised, managed, open-label, platform trial. Lancet 397, 1637–1645 (2021).

    Article 

    Google Scholar
     

  • Rosas, I. O. et al. Tocilizumab in hospitalized sufferers with extreme Covid-19 pneumonia. N. Engl. J. Med. 384, 1503–1516 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • REMAP-CAP Investigators. Interleukin-6 receptor antagonists in critically unwell sufferers with Covid-19. N. Engl. J. Med. 384, 1491–1502 (2021).

    Article 

    Google Scholar
     

  • Writing Committee for the REMAP-CAP Investigators. Lengthy-term (180-day) outcomes in critically unwell sufferers with COVID-19 within the REMAP-CAP randomized medical trial. JAMA 329, 39–51 (2022).

    Article 

    Google Scholar
     

  • Lonze, B. E. et al. A randomized double-blinded placebo managed trial of clazakizumab for the remedy of COVID-19 pneumonia with hyperinflammation. Crit. Care Med. 50, 1348–1359 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Temesgen, Z. et al. Lenzilumab in hospitalised sufferers with COVID-19 pneumonia (LIVE-AIR): a part 3, randomised, placebo-controlled trial. Lancet Respir. Med. 10, 237–246 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Criner, G. J. et al. Anti-granulocyte-macrophage colony-stimulating issue monoclonal antibody gimsilumab for COVID-19 pneumonia: a randomized, double-blind, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 205, 1290–1299 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher, B. A. et al. Namilumab or infliximab in contrast with commonplace of care in hospitalised sufferers with COVID-19 (CATALYST): a randomised, multicentre, multi-arm, multistage, open-label, adaptive, part 2, proof-of-concept trial. Lancet Respir. Med. 10, 255–266 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caricchio, R. et al. Impact of canakinumab vs placebo on survival with out invasive mechanical air flow in sufferers hospitalized with extreme COVID-19: a randomized medical trial. JAMA 326, 230–239 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Resende, G. G. et al. Blockade of interleukin seventeen (IL-17A) with secukinumab in hospitalized COVID-19 sufferers – the BISHOP research. Infect. Dis. 54, 591–599 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Del Valle, D. M. et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 26, 1636–1643 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McNab, F., Mayer-Barber, Okay., Sher, A., Wack, A. & O’Garra, A. Kind I interferons in infectious illness. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoagland, D. A. et al. Leveraging the antiviral sort I interferon system as a primary line of protection towards SARS-CoV-2 pathogenicity. Immunity 54, 557–570.e555 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tam, A. R. et al. Early remedy of high-risk hospitalized COVID-19 sufferers with a mixture of interferon beta-1b and remdesivir: a part 2 open-label randomized managed trial. Clin. Infect. Dis. 76, e216–e226 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Reis, G. et al. Early remedy with pegylated interferon lambda for Covid-19. N. Engl. J. Med. 388, 518–528 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO Solidarity Trial Consortium. Repurposed antiviral medicine for Covid-19 – interim WHO solidarity trial outcomes. N. Engl. J. Med. 384, 497–511 (2021).

    Article 

    Google Scholar
     

  • Kalil, A. C. et al. Efficacy of interferon beta-1a plus remdesivir in contrast with remdesivir alone in hospitalised adults with COVID-19: a double-bind, randomised, placebo-controlled, part 3 trial. Lancet Respir. Med. 9, 1365–1376 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perico, N., Cortinovis, M., Suter, F. & Remuzzi, G. Residence as the brand new frontier for the remedy of COVID-19: the case for anti-inflammatory brokers. Lancet Infect. Dis. 23, e22–e33 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho, J. S. Y. et al. TOP1 inhibition remedy protects towards SARS-CoV-2-induced deadly irritation. Cell 184, 2618–2632.e2617 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvelli, J. et al. Affiliation of COVID-19 irritation with activation of the C5a–C5aR1 axis. Nature 588, 146–150 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vlaar, A. P. J. et al. Anti-C5a antibody (vilobelimab) remedy for critically unwell, invasively mechanically ventilated sufferers with COVID-19 (PANAMO): a multicentre, double-blind, randomised, placebo-controlled, part 3 trial. Lancet Respir. Med. 10, 1137–1146 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malas, M. B. et al. Thromboembolism threat of COVID-19 is excessive and related to the next threat of mortality: a scientific assessment and meta-analysis. eClinicalMedicine 29, 100639 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Farkouh, M. E. et al. Anticoagulation in sufferers with COVID-19: JACC assessment subject of the week. J. Am. Coll. Cardiol. 79, 917–928 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ATTACC Investigators. Therapeutic anticoagulation with heparin in noncritically unwell sufferers with Covid-19. N. Engl. J. Med. 385, 790–802 (2021).

    Article 

    Google Scholar
     

  • Ramacciotti, E. et al. Rivaroxaban versus no anticoagulation for post-discharge thromboprophylaxis after hospitalisation for COVID-19 (MICHELLE): an open-label, multicentre, randomised, managed trial. Lancet 399, 50–59 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Connors, J. M. et al. Impact of antithrombotic remedy on medical outcomes in outpatients with clinically steady symptomatic COVID-19: the ACTIV-4B randomized medical trial. JAMA 326, 1703–1712 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barco, S. et al. Enoxaparin for major thromboprophylaxis in symptomatic outpatients with COVID-19 (OVID): a randomised, open-label, parallel-group, multicentre, part 3 trial. Lancet Haematol. 9, e585–e593 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ananworanich, J. et al. Randomized research of rivaroxaban vs placebo on illness development and signs decision in high-risk adults with delicate coronavirus illness 2019. Clin. Infect. Dis. 75, e473–e481 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • INSPIRATION Investigators. Impact of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic occasions, extracorporeal membrane oxygenation remedy, or mortality amongst sufferers with COVID-19 admitted to the intensive care unit: the INSPIRATION randomized medical trial. JAMA 325, 1620–1630 (2021).

    Article 

    Google Scholar
     

  • Moores, L. Okay. et al. Thromboprophylaxis in sufferers with COVID-19: a quick replace to the CHEST guideline and professional panel report. Chest 162, 213–225 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuker, A. et al. American society of hematology 2021 tips on using anticoagulation for thromboprophylaxis in sufferers with COVID-19. Blood Adv. 5, 872–888 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandra, A., Chakraborty, U., Ghosh, S. & Dasgupta, S. Anticoagulation in COVID-19: present ideas and controversies. Postgrad. Med. J. 98, 395–402 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, Q. et al. Use of non-steroidal anti-inflammatory medicine and antagonistic outcomes in the course of the COVID-19 pandemic: a scientific assessment and meta-analysis. eClinicalMedicine 46, 101373 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marrone, A. et al. Remdesivir plus dexamethasone versus dexamethasone alone for the remedy of coronavirus illness 2019 (COVID-19) sufferers requiring supplemental O2 remedy: a potential managed nonrandomized research. Clin. Infect. Dis. 75, e403–e409 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, G. et al. Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2. J. Clin. Make investments. 132, e160766 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hogan, J. I. et al. Remdesivir resistance in transplant recipients with persistent COVID-19. Clin. Infect. Dis. 76, 342–345 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Heyer, A. et al. Remdesivir-induced emergence of SARS-CoV2 variants in sufferers with extended an infection. Cell Rep. Med. 3, 100735 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G. & De Clercq, E. Present remedy for continual hepatitis C: the function of direct-acting antivirals. Antivir. Res. 142, 83–122 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pushpakom, S. et al. Drug repurposing: progress, challenges ′and proposals. Nat. Rev. Drug Discov. 18, 41–58 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chinthapatla, R. et al. Interfering with nucleotide excision by the coronavirus 3′-to-5′ exoribonuclease. Nucleic Acids Res. 51, 315–336 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Gohl, M. et al. From repurposing to revamp: optimization of boceprevir to extremely potent inhibitors of the SARS-CoV-2 fundamental protease. Molecules 27, 4292 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tummino, T. A. et al. Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science 373, 541–547 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Begley, C. G. et al. Drug repurposing: misconceptions, challenges, and alternatives for tutorial researchers. Sci. Transl. Med. 13, eabd5524 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaki, M. M. et al. Cell remedy methods for COVID-19: present approaches and potential functions. Sci. Adv. 7, eabg5995 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, A. J. et al. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a extremely divergent RNA dependent RNA polymerase. Antivir. Res. 169, 104541 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, J. et al. 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides: SARS-CoV-2 RNA-dependent RNA polymerase inhibitors. Antivir. Res. 196, 105209 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurard-Levin, Z. A. et al. Analysis of SARS-CoV-2 3C-like protease inhibitors utilizing self-assembled monolayer desorption ionization mass spectrometry. Antivir. Res. 182, 104924 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G. et al. Drug discovery of nucleos(t)ide antiviral brokers: devoted to Prof. Dr. Erik De Clercq occasionally of his eightieth birthday. Molecules 26, 923 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bewley, Okay. R. et al. Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque discount neutralization, microneutralization and pseudotyped virus neutralization assays. Nat. Protoc. 16, 3114–3140 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bestion, E., Halfon, P., Mezouar, S. & Mege, J. L. Cell and animal fashions for SARS-CoV-2 analysis. Viruses 14, 1507 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamers, M. M. et al. An organoid-derived bronchioalveolar mannequin for SARS-CoV-2 an infection of human alveolar sort II-like cells. EMBO J. 40, e105912 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bukowy-Bieryllo, Z. Lengthy-term differentiating major human airway epithelial cell cultures: how far are we. Cell Commun. Sign. 19, 63 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez, S. et al. Overcoming tradition restriction for SARS-CoV-2 in human cells facilitates the screening of compounds inhibiting viral replication. Antimicrob. Brokers Chemother. 65, e0009721 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Remdesivir and chloroquine successfully inhibit the lately emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, M. et al. Chloroquine doesn’t inhibit an infection of human lung cells with SARS-CoV-2. Nature 585, 588–590 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. J. H. et al. How COVID-19 has essentially modified medical analysis in world well being. Lancet Glob. Well being 9, e711–e720 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esper, F. P. et al. Alpha to omicron: illness severity and medical outcomes of main SARS-CoV-2 variants. J. Infect. Dis. 227, 344–352 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Park, J. J. H., Detry, M. A., Murthy, S., Guyatt, G. & Mills, E. J. use and interpret the outcomes of a platform trial: customers’ information to the medical literature. JAMA 327, 67–74 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tikkinen, Okay. A. O., Malekzadeh, R., Schlegel, M., Rutanen, J. & Glasziou, P. COVID-19 medical trials: studying from exceptions within the analysis chaos. Nat. Med. 26, 1671–1672 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Criminal, H., Raza, S., Nowell, J., Younger, M. & Edison, P. Lengthy covid-mechanisms, threat components, and administration. BMJ 374, n1648 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Subramanian, A. et al. Signs and threat components for lengthy COVID in non-hospitalized adults. Nat. Med. 28, 1706–1714 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • International Burden of Illness Lengthy COVID Collaborators. Estimated world proportions of people with persistent fatigue, cognitive, and respiratory symptom clusters following symptomatic COVID-19 in 2020 and 2021. JAMA 328, 1604–1615 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Ayoubkhani, D. et al. Trajectory of lengthy covid signs after Covid-19 vaccination: neighborhood primarily based cohort research. BMJ 377, e069676 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ledford, H. Lengthy-COVID therapies: why the world remains to be ready. Nature 608, 258–260 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, G. J. et al. The mechanism of RNA capping by SARS-CoV-2. Nature 609, 793–800 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenhalgh, T., Sivan, M., Delaney, B., Evans, R. & Milne, R. Lengthy covid — an replace for major care. BMJ 378, e072117 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, & BA.5. Nature 608, 603–608 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christie, M. J. et al. Of bats and males: immunomodulatory remedy choices for COVID-19 guided by the immunopathology of SARS-CoV-2 an infection. Sci. Immunol. 6, eabd0205 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, C. et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by concentrating on the viral fundamental protease. Cell Res. 30, 678–692 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, L. et al. A mechanism for SARS-CoV-2 RNA capping and its inhibition by nucleotide analog inhibitors. Cell 185, 4347–4360.e4317 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, S. et al. Crystal construction of SARS-CoV-2 nsp10 certain to Nsp14-ExoN area reveals an exoribonuclease with each structural and useful integrity. Nucleic Acids Res. 49, 5382–5392 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schafer, A. et al. Therapeutic remedy with an oral prodrug of the remdesivir parental nucleoside is protecting towards SARS-CoV-2 pathogenesis in mice. Sci. Transl. Med. 14, eabm3410 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tempestilli, M. et al. Pharmacokinetics of remdesivir and GS-441524 in two critically unwell sufferers who recovered from COVID-19. J. Antimicrob. Chemother. 75, 2977–2980 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, period of viral shedding, and infectiousness: a scientific assessment and meta-analysis. Lancet Microbe 2, e13–e22 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arkhipova-Jenkins, I. et al. Antibody response after SARS-CoV-2 an infection and implications for immunity: a speedy dwelling assessment. Ann. Intern. Med. 174, 811–821 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ballering, A. V., van Zon, S. Okay. R., Olde Hartman, T. C. & Rosmalen, J. G. M., Lifelines Corona Analysis Initiative. Persistence of somatic signs after COVID-19 within the Netherlands: an observational cohort research. Lancet 400, 452–461 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here