Structural characterisation of hemagglutinin from seven Influenza A H1N1 strains reveal variety within the C05 antibody recognition web site

0
35


  • Solar, X. et al. Bat-derived influenza hemagglutinin H17 doesn’t bind canonical avian or human receptors and probably makes use of a singular entry mechanism. Cell Rep. 3(3), 769–778 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nickol, M. E. & Kindrachuk, J. A 12 months of terror and a century of reflection: Views on the good influenza pandemic of 1918–1919. BMC Infect. Dis. 19(1), 1–10 (2019).

    Article 

    Google Scholar
     

  • Iuliano, A. D. et al. Estimates of worldwide seasonal influenza-associated respiratory mortality: A modelling research. Lancet 391(10127), 1285–1300 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kilbourne, E. D. Influenza pandemics of the twentieth century. Emerg. Infect. Dis. 12(1), 9 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Tang, C. Y. & Wan, X.-F. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal. Bioanal. Chem. 20, 1–41 (2021).


    Google Scholar
     

  • Sriwilaijaroen, N. & Suzuki, Y. Molecular foundation of the construction and performance of H1 hemagglutinin of influenza virus. Proc. Jpn. Acad. Ser. B 88(6), 226–249 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, M. & Veit, M. Hemagglutinin-esterase-fusion (HEF) protein of influenza C virus. Protein Cell 7(1), 28–45 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. Construction of influenza haemagglutinin on the pH of membrane fusion. Nature 371(6492), 37–43 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, S. C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15(7), 690–698 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Moro, E. et al. Reversible structural modifications within the influenza hemagglutinin precursor at membrane fusion pH. Proc. Natl. Acad. Sci. 119(33), e2208011119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carr, C. M. & Kim, P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73(4), 823–832 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weis, W. et al. Construction of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333(6172), 426–431 (1988).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, I. A., Skehel, J. J. & Wiley, D. Construction of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å decision. Nature 289(5796), 366–373 (1981).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, N. C. & Wilson, I. A. Structural insights into the design of novel anti-influenza therapies. Nat. Struct. Mol. Biol. 25(2), 115–121 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sangesland, M. et al. Allelic polymorphism controls autoreactivity and vaccine elicitation of human broadly neutralizing antibodies in opposition to influenza virus. Immunity 55(9), 1693-709e8 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krammer, F. & Palese, P. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr. Opin. Virol. 3(5), 521–530 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sautto, G. A. et al. Elicitation of broadly protecting antibodies following an infection with influenza viruses expressing H1N1 computationally optimized broadly reactive hemagglutinin antigens. Immunohorizons 2(7), 226–237 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sautto, G. A. & Ross, T. M. Hemagglutinin consensus-based prophylactic approaches to beat influenza virus variety. Vet. Ital. 55(3), 195–201 (2019).

    PubMed 

    Google Scholar
     

  • Ueda, G. et al. Tailor-made design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. Elife 9, e57659 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ekiert, D. C. et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489(7417), 526–532 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabsch, W. Integration, scaling, space-group project and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66(2), 133–144 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vagin, A. & Lebedev, A. MoRDa, an automated molecular substitute pipeline. Acta Crystallogr. Discovered. Adv. 2, 25 (2015).


    Google Scholar
     

  • Emsley, P. & Cowtan, Okay. Coot: Mannequin-building instruments for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60(12), 2126–2132 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: A complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D Biol. Crystallogr. 66(2), 213–221 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: All-atom construction validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66(1), 12–21 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Myler, P. et al. The seattle structural genomics middle for infectious illness (SSGCID). Infect. Disord. Drug Targets 9(5), 493–506 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Böttcher, E. et al. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J. Virol. 80(19), 9896–9898 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kido, H. et al. Isolation and characterization of a novel trypsin-like protease present in rat bronchiolar epithelial Clara cells A potential activator of the viral fusion glycoprotein. J. Biol. Chem. 267(19), 13573–13579 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murakami, M. et al. Mini-plasmin discovered within the epithelial cells of bronchioles triggers an infection by broad-spectrum influenza A viruses and Sendai virus. Eur. J. Biochem. 268(10), 2847–2855 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okumura, Y. et al. Novel kind II transmembrane serine proteases, MSPL and TMPRSS13, Proteolytically activate membrane fusion exercise of the hemagglutinin of extremely pathogenic avian influenza viruses and induce their multicycle replication. J. Virol. 84(10), 5089–5096 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Towatari, T. et al. Identification of ectopic anionic trypsin I in rat lungs potentiating pneumotropic virus infectivity and elevated enzyme stage after virus an infection. Eur. J. Biochem. 269(10), 2613–2621 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrler, G. & Klenk, H.-D. Construction and performance of the HEF glycoprotein of influenza C virus. Adv. Virus Res. 40, 213–234 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenthal, P. B. et al. Construction of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature 396(6706), 92–96 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, N. C. & Wilson, I. A. Structural biology of influenza hemagglutinin: An amaranthine journey. Viruses 12(9), 1053 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, Okay., Aramini, J. M., Ma, L.-C., Krug, R. M. & Arnold, E. Buildings of influenza A proteins and insights into antiviral drug targets. Nat. Struct. Mol. Biol. 17(5), 530–538 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krissinel, E. & Henrick, Okay. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372(3), 774–797 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell, C. J. Hemagglutinin stability and its influence on influenza A virus infectivity, pathogenicity, and transmissibility in avians, mice, swine, seals, ferrets, and people. Viruses 13(5), 746 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caton, A. J., Brownlee, G. G., Yewdell, J. W. & Gerhard, W. The antigenic construction of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31(2), 417–427 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerhard, W., Yewdell, J., Frankel, M. E. & Webster, R. Antigenic construction of influenza virus haemagglutinin outlined by hybridoma antibodies. Nature 290(5808), 713–717 (1981).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashkenazy, H. et al. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44(W1), W344–W350 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, N. C. et al. In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity. Nat. Commun. 8, 15371 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sevy, A. M. et al. Multistate design of influenza antibodies improves affinity and breadth in opposition to seasonal viruses. Proc. Natl. Acad. Sci. USA 116(5), 1597–1602 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yewdell, J. W. Antigenic drift: Understanding COVID-19. Immunity 54(12), 2681–2687 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castelán-Vega, J. A., Magaña-Hernández, A., Jiménez-Alberto, A. & Ribas-Aparicio, R. M. The hemagglutinin of the influenza A (H1N1) pdm09 is mutating in direction of stability. Adv. Appl. Bioinform. Chem. 7, 37 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sevy, A. M. et al. Computationally designed cyclic peptides derived from an antibody loop enhance breadth of binding for influenza variants. Construction 28(10), 1114–1123 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayora-Talavera, G. Sialic acid receptors: Give attention to their function in influenza an infection. J. Receptor Ligand Channel Res. 10, 1–11 (2018).

    Article 

    Google Scholar
     

  • Zheng, Z., Paul, S. S., Mo, X., Yuan, Y.-R.A. & Tan, Y.-J. The vestigial esterase area of haemagglutinin of H5N1 avian influenza A virus: Antigenicity and contribution to viral pathogenesis. Vaccines 6(3), 53 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bangaru, S. et al. A multifunctional human monoclonal neutralizing antibody that targets a singular conserved epitope on influenza HA. Nat. Commun. 9(1), 1–15 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chai, N. et al. A broadly protecting therapeutic antibody in opposition to influenza B virus with two mechanisms of motion. Nat. Commun. 8(1), 1–18 (2017).

    CAS 

    Google Scholar
     

  • Dreyfus, C. et al. Extremely conserved protecting epitopes on influenza B viruses. Science 337(6100), 1343–1348 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, G. S. et al. Broadly-reactive neutralizing and non-neutralizing antibodies directed in opposition to the H7 influenza virus hemagglutinin reveal divergent mechanisms of safety. PLoS Pathog. 12(4), e1005578 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Divergent requirement of Fc-Fcγ receptor interactions for in vivo safety in opposition to influenza viruses by two pan-H5 hemagglutinin antibodies. J. Virol. 91(11), e02065-e2116 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, C. S. et al. Pure and directed antigenic drift of the H1 influenza virus hemagglutinin stalk area. Sci. Rep. 7(1), 1–19 (2017).

    Article 

    Google Scholar
     

  • Sui, J. et al. Structural and purposeful bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16(3), 265–273 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ekiert, D. C. et al. Antibody recognition of a extremely conserved influenza virus epitope. Science 324(5924), 246–251 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corti, D. et al. A neutralizing antibody chosen from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333(6044), 850–856 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here