Hirotsu, Y. et al. SARS-CoV-2 Omicron sublineage BA.2 replaces BA.1.1: genomic surveillance in Japan from September 2021 to March 2022. J. Infect. 85, 174–211 (2022).
Lyngse, F. P. et al. Family transmission of SARS-CoV-2 Omicron variant of concern subvariants BA.1 and BA.2 in Denmark. Nat. Commun. 13, 5760 (2022).
Mefsin, Y. M. et al. Epidemiology of infections with SARS-CoV-2 Omicron BA.2 variant, Hong Kong, January–March 2022. Emerg. Infect. Dis. 28, 1856–1858 (2022).
Smith, D. J. et al. COVID-19 mortality and vaccine protection — Hong Kong Particular Administrative Area, China, January 6, 2022–March 21, 2022. MMWR Morb. Mortal. Wkly Rep. 71, 545–548 (2022).
Yamasoba, D. et al. Virological traits of the SARS-CoV-2 Omicron BA.2 spike. Cell 185, 2103–2115.e19 (2022).
Wolter, N. et al. Medical severity of omicron lineage BA.2 an infection in contrast with BA.1 an infection in South Africa. Lancet 400, 93–96 (2022).
Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604, 553–556 (2022).
Gruell, H. et al. SARS-CoV-2 Omicron sublineages exhibit distinct antibody escape patterns. Cell Host Microbe. 30, 1231–1241.e6 (2022).
Yu, J. et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 variants. N. Engl. J. Med. 386, 1579–1580 (2022).
Mykytyn, A. Z. et al. Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct. Sci Immunol. 7, eabq4450 (2022).
Cao, Y. et al. Omicron BA.2 particularly evades broad sarbecovirus neutralizing antibodies. Preprint at bioRxiv https://doi.org/10.1101/2022.02.07.479349 (2022).
Zou, J. et al. Cross-neutralization of Omicron BA.1 in opposition to BA.2 and BA.3 SARS-CoV-2. Nat. Commun. 13, 2956 (2022).
Chemaitelly, H. et al. Safety of Omicron sub-lineage an infection in opposition to reinfection with one other Omicron sub-lineage. Nat. Commun. 13, 4675 (2022).
Stegger, M. et al. Incidence and significance of Omicron BA.1 an infection adopted by BA.2 reinfection. Preprint at medRxiv https://doi.org/10.1101/2022.02.19.22271112 (2022).
Kirsebom, F. C. M. et al. COVID-19 vaccine effectiveness in opposition to the omicron (BA.2) variant in England. Lancet Infect. Dis. 22, 931–933 (2022).
Bowen, J. E. et al. Omicron spike operate and neutralizing exercise elicited by a complete panel of vaccines. Science. 377, 890–894 (2022).
Dai, L. & Gao, G. F. Viral targets for vaccines in opposition to COVID-19. Nat. Rev. Immunol. 21, 73–82 (2021).
Bosch, B. J., van der Zee, R., de Haan, C. A. M. & Rottier, P. J. M. The coronavirus spike protein is a category I virus fusion protein: structural and purposeful characterization of the fusion core complicated. J. Virol. 77, 8801–8811 (2003).
Hoffmann, M. et al. SARS-CoV-2 cell entry relies on ACE2 and TMPRSS2 and is blocked by a clinically confirmed protease inhibitor. Cell 181, 271–280.e8 (2020).
Millet, J. Ok. & Whittaker, G. R. Host cell entry of Center East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl Acad. Sci. USA 111, 15214–15219 (2014).
Tortorici, M. A. & Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res 105, 93–116 (2019).
Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).
Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).
Wrapp, D. et al. Cryo-EM construction of the 2019-nCoV spike within the prefusion conformation. Science 367, 1260–1263 (2020).
Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).
Hong, Q. et al. Molecular foundation of receptor binding and antibody neutralization of Omicron. Nature 604, 546–552 (2022).
Stalls, V. et al. Cryo-EM buildings of SARS-CoV-2 Omicron BA.2 spike. Cell Rep. 39, 111009 (2022).
Zhang, J. et al. Structural affect on SARS-CoV-2 spike protein by D614G substitution. Science 372, 525–530 (2021).
Cai, Y. et al. Structural foundation for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Science 373, 642–648 (2021).
Zhang, J. et al. Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science 374, 1353–1360 (2021).
Zhang, J. et al. Structural and purposeful affect by SARS-CoV-2 Omicron spike mutations. Cell Rep. 39, 110729 (2022).
Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586–1592 (2020).
Ogando, N. S. et al. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, fast adaptation and cytopathology. J. Gen. Virol. 101, 925–940 (2020).
McCray, P. B.Jr. et al. Deadly an infection of K18-hACE2 mice contaminated with extreme acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).
Radvak, P. et al. SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains. Nat. Commun. 12, 6559 (2021).
Tong, P. et al. Reminiscence B cell repertoire for recognition of evolving SARS-CoV-2 spike. Cell 184, 4969–4980.e15 (2021).
Xiao, T. et al. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Nat. Struct. Mol. Biol. 28, 202–209 (2021).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for fast unsupervised cryo-EM construction willpower. Nat. Strategies 14, 290–296 (2017).
Zhang, J., Xiao, T., Cai, Y. & Chen, B. Construction of SARS-CoV-2 spike protein. Curr. Opin. Virol. 50, 173–182 (2021).
Tian, F. et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife 10, e69091 (2021).
Mannar, D. et al. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM construction of spike protein-ACE2 complicated. Science. 375, 760–764 (2022).
Yin, W. et al. Buildings of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science. 375, 1048–1053 (2022).
McCallum, M. et al. Structural foundation of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science 375, 864–868 (2022).
Cui, Z. et al. Structural and purposeful characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell. 185, 860–871.e13 (2022).
Gobeil, S. M.-C. et al. Impact of pure mutations of SARS-CoV-2 on spike construction, conformation, and antigenicity. Science 373, eabi6226 (2021).
Chi, X. et al. A neutralizing human antibody binds to the N-terminal area of the Spike protein of SARS-CoV-2. Science 369, 650–655 (2020).
Davies, N. G. et al. Estimated transmissibility and affect of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2021).
Hart, W. S. et al. Era time of the alpha and delta SARS-CoV-2 variants: an epidemiological evaluation. Lancet Infect. Dis. 22, 603–610 (2022).
Milne, G. et al. Does an infection with or vaccination in opposition to SARS-CoV-2 result in lasting immunity? Lancet Respir. Med 9, 1450–1466 (2021).
Levin, E. G. et al. Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N. Engl. J. Med. 385, e84 (2021).
Meng, B. et al. Altered TMPRSS2 utilization by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).
Zeng, C. et al. Neutralization and stability of SARS-CoV-2 Omicron variant. Preprint at bioRxiv https://doi.org/10.1101/2021.12.16.472934 (2021).
Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated illness in mice and hamsters. Nature 603, 687–692 (2022).
Suzuki, R. et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 603, 700–705 (2022).
Shuai, H. et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 603, 693–699 (2022).
Sentis, C. et al. SARS-CoV-2 Omicron variant, lineage BA.1, is related to decrease viral load in nasopharyngeal samples in comparison with Delta variant. Viruses 14, 919 (2022).
Yinda, C. Ok. et al. K18-hACE2 mice develop respiratory illness resembling extreme COVID-19. PLoS Pathog. 17, e1009195 (2021).
Romano, M., Ruggiero, A., Squeglia, F., Maga, G. & Berisio, R. A structural view of SARS-CoV-2 RNA replication equipment: RNA synthesis, proofreading and last capping. Cells 9, 1267 (2020).
Hansen, J. et al. Research in humanized mice and convalescent people yield a SARS-CoV-2 antibody cocktail. Science 369, 1010–1014 (2020).
Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).
Tortorici, M. A. et al. Ultrapotent human antibodies shield in opposition to SARS-CoV-2 problem by way of a number of mechanisms. Science 370, 950–957 (2020).
Starr, T. N. et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to flee. Nature 597, 97–102 (2021).
Huo, J. et al. Neutralization of SARS-CoV-2 by destruction of the prefusion spike. Cell Host Microbe 28, 445–454.e6 (2020).
Chen, J. et al. Impact of the cytoplasmic area on antigenic traits of HIV-1 envelope glycoprotein. Science 349, 191–195 (2015).
Schneider, C. A., Rasband, W. S. & Eliceiri, Ok. W. NIH Picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 9, 671–675 (2012).
Chen, C. Z. et al. Figuring out SARS-CoV-2 entry inhibitors by drug repurposing screens of SARS-S and MERS-S pseudotyped particles. ACS Pharmacol. Transl. Sci. 3, 1165–1175 (2020).
Millet, J. Ok. & Whittaker, G. R. Murine leukemia virus (MLV)-based coronavirus spike-pseudotyped particle manufacturing and an infection. Bio Protoc. 6, e2035 (2016).
Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Development, detection, quantification, and inactivation of SARS-CoV-2. Virology 548, 39–48 (2020).
Xie, X. et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe 27, 841–848.e3 (2020).
Mastronarde, D. N. Automated electron microscope tomography utilizing sturdy prediction of specimen actions. J. Struct. Biol. 152, 36–51 (2005).
Scheres, S. H. W. RELION: implementation of a Bayesian strategy to cryo-EM construction willpower. J. Struct. Biol. 180, 519–530 (2012).
Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
Croll, T. I. ISOLDE: a bodily real looking surroundings for mannequin constructing into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).
Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).
Morin, A. et al. Collaboration will get probably the most out of software program. eLife 2, e01456 (2013).