Structural and purposeful traits of the SARS-CoV-2 Omicron subvariant BA.2 spike protein


  • Hirotsu, Y. et al. SARS-CoV-2 Omicron sublineage BA.2 replaces BA.1.1: genomic surveillance in Japan from September 2021 to March 2022. J. Infect. 85, 174–211 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyngse, F. P. et al. Family transmission of SARS-CoV-2 Omicron variant of concern subvariants BA.1 and BA.2 in Denmark. Nat. Commun. 13, 5760 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mefsin, Y. M. et al. Epidemiology of infections with SARS-CoV-2 Omicron BA.2 variant, Hong Kong, January–March 2022. Emerg. Infect. Dis. 28, 1856–1858 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, D. J. et al. COVID-19 mortality and vaccine protection — Hong Kong Particular Administrative Area, China, January 6, 2022–March 21, 2022. MMWR Morb. Mortal. Wkly Rep. 71, 545–548 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamasoba, D. et al. Virological traits of the SARS-CoV-2 Omicron BA.2 spike. Cell 185, 2103–2115.e19 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolter, N. et al. Medical severity of omicron lineage BA.2 an infection in contrast with BA.1 an infection in South Africa. Lancet 400, 93–96 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604, 553–556 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruell, H. et al. SARS-CoV-2 Omicron sublineages exhibit distinct antibody escape patterns. Cell Host Microbe. 30, 1231–1241.e6 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 variants. N. Engl. J. Med. 386, 1579–1580 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mykytyn, A. Z. et al. Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct. Sci Immunol. 7, eabq4450 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Omicron BA.2 particularly evades broad sarbecovirus neutralizing antibodies. Preprint at bioRxiv https://doi.org/10.1101/2022.02.07.479349 (2022).

  • Zou, J. et al. Cross-neutralization of Omicron BA.1 in opposition to BA.2 and BA.3 SARS-CoV-2. Nat. Commun. 13, 2956 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chemaitelly, H. et al. Safety of Omicron sub-lineage an infection in opposition to reinfection with one other Omicron sub-lineage. Nat. Commun. 13, 4675 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stegger, M. et al. Incidence and significance of Omicron BA.1 an infection adopted by BA.2 reinfection. Preprint at medRxiv https://doi.org/10.1101/2022.02.19.22271112 (2022).

  • Kirsebom, F. C. M. et al. COVID-19 vaccine effectiveness in opposition to the omicron (BA.2) variant in England. Lancet Infect. Dis. 22, 931–933 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowen, J. E. et al. Omicron spike operate and neutralizing exercise elicited by a complete panel of vaccines. Science. 377, 890–894 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, L. & Gao, G. F. Viral targets for vaccines in opposition to COVID-19. Nat. Rev. Immunol. 21, 73–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bosch, B. J., van der Zee, R., de Haan, C. A. M. & Rottier, P. J. M. The coronavirus spike protein is a category I virus fusion protein: structural and purposeful characterization of the fusion core complicated. J. Virol. 77, 8801–8811 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, M. et al. SARS-CoV-2 cell entry relies on ACE2 and TMPRSS2 and is blocked by a clinically confirmed protease inhibitor. Cell 181, 271–280.e8 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millet, J. Ok. & Whittaker, G. R. Host cell entry of Center East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl Acad. Sci. USA 111, 15214–15219 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tortorici, M. A. & Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res 105, 93–116 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wrapp, D. et al. Cryo-EM construction of the 2019-nCoV spike within the prefusion conformation. Science 367, 1260–1263 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, Q. et al. Molecular foundation of receptor binding and antibody neutralization of Omicron. Nature 604, 546–552 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stalls, V. et al. Cryo-EM buildings of SARS-CoV-2 Omicron BA.2 spike. Cell Rep. 39, 111009 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Structural affect on SARS-CoV-2 spike protein by D614G substitution. Science 372, 525–530 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Y. et al. Structural foundation for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Science 373, 642–648 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science 374, 1353–1360 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Structural and purposeful affect by SARS-CoV-2 Omicron spike mutations. Cell Rep. 39, 110729 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586–1592 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogando, N. S. et al. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, fast adaptation and cytopathology. J. Gen. Virol. 101, 925–940 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCray, P. B.Jr. et al. Deadly an infection of K18-hACE2 mice contaminated with extreme acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radvak, P. et al. SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains. Nat. Commun. 12, 6559 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong, P. et al. Reminiscence B cell repertoire for recognition of evolving SARS-CoV-2 spike. Cell 184, 4969–4980.e15 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, T. et al. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Nat. Struct. Mol. Biol. 28, 202–209 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for fast unsupervised cryo-EM construction willpower. Nat. Strategies 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J., Xiao, T., Cai, Y. & Chen, B. Construction of SARS-CoV-2 spike protein. Curr. Opin. Virol. 50, 173–182 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, F. et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife 10, e69091 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mannar, D. et al. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM construction of spike protein-ACE2 complicated. Science. 375, 760–764 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, W. et al. Buildings of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science. 375, 1048–1053 (2022).

  • McCallum, M. et al. Structural foundation of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science 375, 864–868 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, Z. et al. Structural and purposeful characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell. 185, 860–871.e13 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gobeil, S. M.-C. et al. Impact of pure mutations of SARS-CoV-2 on spike construction, conformation, and antigenicity. Science 373, eabi6226 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi, X. et al. A neutralizing human antibody binds to the N-terminal area of the Spike protein of SARS-CoV-2. Science 369, 650–655 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, N. G. et al. Estimated transmissibility and affect of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hart, W. S. et al. Era time of the alpha and delta SARS-CoV-2 variants: an epidemiological evaluation. Lancet Infect. Dis. 22, 603–610 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milne, G. et al. Does an infection with or vaccination in opposition to SARS-CoV-2 result in lasting immunity? Lancet Respir. Med 9, 1450–1466 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levin, E. G. et al. Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N. Engl. J. Med. 385, e84 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng, B. et al. Altered TMPRSS2 utilization by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, C. et al. Neutralization and stability of SARS-CoV-2 Omicron variant. Preprint at bioRxiv https://doi.org/10.1101/2021.12.16.472934 (2021).

  • Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated illness in mice and hamsters. Nature 603, 687–692 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, R. et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 603, 700–705 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuai, H. et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 603, 693–699 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sentis, C. et al. SARS-CoV-2 Omicron variant, lineage BA.1, is related to decrease viral load in nasopharyngeal samples in comparison with Delta variant. Viruses 14, 919 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yinda, C. Ok. et al. K18-hACE2 mice develop respiratory illness resembling extreme COVID-19. PLoS Pathog. 17, e1009195 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romano, M., Ruggiero, A., Squeglia, F., Maga, G. & Berisio, R. A structural view of SARS-CoV-2 RNA replication equipment: RNA synthesis, proofreading and last capping. Cells 9, 1267 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen, J. et al. Research in humanized mice and convalescent people yield a SARS-CoV-2 antibody cocktail. Science 369, 1010–1014 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tortorici, M. A. et al. Ultrapotent human antibodies shield in opposition to SARS-CoV-2 problem by way of a number of mechanisms. Science 370, 950–957 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Starr, T. N. et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to flee. Nature 597, 97–102 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo, J. et al. Neutralization of SARS-CoV-2 by destruction of the prefusion spike. Cell Host Microbe 28, 445–454.e6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Impact of the cytoplasmic area on antigenic traits of HIV-1 envelope glycoprotein. Science 349, 191–195 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, C. A., Rasband, W. S. & Eliceiri, Ok. W. NIH Picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 9, 671–675 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. Z. et al. Figuring out SARS-CoV-2 entry inhibitors by drug repurposing screens of SARS-S and MERS-S pseudotyped particles. ACS Pharmacol. Transl. Sci. 3, 1165–1175 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millet, J. Ok. & Whittaker, G. R. Murine leukemia virus (MLV)-based coronavirus spike-pseudotyped particle manufacturing and an infection. Bio Protoc. 6, e2035 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Development, detection, quantification, and inactivation of SARS-CoV-2. Virology 548, 39–48 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, X. et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe 27, 841–848.e3 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mastronarde, D. N. Automated electron microscope tomography utilizing sturdy prediction of specimen actions. J. Struct. Biol. 152, 36–51 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Scheres, S. H. W. RELION: implementation of a Bayesian strategy to cryo-EM construction willpower. J. Struct. Biol. 180, 519–530 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Croll, T. I. ISOLDE: a bodily real looking surroundings for mannequin constructing into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morin, A. et al. Collaboration will get probably the most out of software program. eLife 2, e01456 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Read More

    Recent