SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC)


  • Proal, A. D. & VanElzakker, M. B. Lengthy COVID or post-acute sequelae of COVID-19 (PASC): an outline of organic elements that will contribute to persistent signs. Entrance. Microbiol. https://doi.org/10.3389/FMICB.2021.698169 (2021).

  • Nationwide Middle for Well being Statistics. US Census Bureau, Family Pulse Survey, 2022–2023. Lengthy COVID (2023).

  • Cutler, D. M. The financial value of lengthy COVID: an replace (2023). White Paper. https://scholar.harvard.edu/recordsdata/cutler/recordsdata/long_covid_update_7-22.pdf (2023).

  • Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Lengthy COVID: main findings, mechanisms and proposals. Nat. Rev. Microbiol. https://doi.org/10.1038/S41579-022-00846-2 (2023).

  • Davis, H. E. et al. Characterizing lengthy COVID in a world cohort: 7 months of signs and their influence. EClinicalMedicine https://doi.org/10.1016/J.ECLINM.2021.101019 (2021).

  • Petersen, E. L. et al. Multi-organ evaluation in primarily non-hospitalized people after SARS-CoV-2 an infection: the Hamburg Metropolis Well being Examine COVID programme. Eur. Coronary heart J. 43, 1124–1137 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peluso, M. J. et al. Persistence, magnitude, and patterns of postacute signs and high quality of life following onset of SARS-CoV-2 an infection: cohort description and approaches for measurement. Open Discussion board Infect. Dis. https://doi.org/10.1093/OFID/OFAB640 (2022).

  • Lopez-Leon, S. et al. Lengthy-COVID in youngsters and adolescents: a scientific overview and meta-analyses. Sci. Rep. https://doi.org/10.1038/S41598-022-13495-5 (2022).

  • Funk, A. L. et al. Publish–COVID-19 situations amongst youngsters 90 days after SARS-CoV-2 an infection. JAMA Netw. Open. 5, E2223253 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Facilities for Illness Management and Prevention. Well being department-reported instances of multisystem inflammatory syndrome in youngsters (MIS-C) in the US. https://www.cdc.gov/mis/index.html (2023).

  • Keita, A. Okay. et al. A 40-month follow-up of Ebola virus illness survivors in Guinea (Postebogui) reveals long-term detection of Ebola viral ribonucleic acid in semen and breast milk. Open Discussion board Infect. Dis. https://doi.org/10.1093/ofid/ofz482 (2019).

  • Varkey, J. B. et al. Persistence of Ebola virus in ocular fluid throughout convalescence. N. Engl. J. Med. 372, 2423–2427 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sow, M. S. et al. New proof of long-lasting persistence of Ebola virus genetic materials in semen of survivors. J. Infect. Dis. 214, 1475–1476 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Paz-Bailey, G. et al. Persistence of Zika virus in physique fluids—last report. N. Engl. J. Med. 379, 1234–1243 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chia, J. Okay. S. & Chia, A. Y. Persistent fatigue syndrome is related to power enterovirus an infection of the abdomen. J. Clin. Pathol. 61, 43–48 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kühl, U. et al. Viral persistence within the myocardium is related to progressive cardiac dysfunction. Circulation 112, 1965–1970 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Permar, S. R. et al. Extended measles virus shedding in human immunodeficiency virus-infected youngsters, detected by reverse transcriptase-polymerase chain response. J. Infect. Dis. 183, 532–538 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riddell, M. A., Moss, W. J., Hauer, D., Monze, M. & Griffin, D. E. Sluggish clearance of measles virus RNA after acute an infection. J. Clin. Virol. 39, 312–317 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dokubo, E. Okay. et al. Persistence of Ebola virus after the tip of widespread transmission in Liberia: an outbreak report. Lancet Infect. Dis. 18, 1015–1024 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Scott, J. T. et al. Publish-Ebola syndrome, Sierra Leone. Emerg. Infect. Dis. 22, 641–646 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subissi, L. et al. Ebola virus transmission brought on by persistently contaminated survivors of the 2014-2016 outbreak in West Africa. J. Infect. Dis. 218, S287–S291 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keita, A. Okay. et al. Resurgence of Ebola virus in 2021 in Guinea suggests a brand new paradigm for outbreaks. Nature 597, 539–543 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell, Okay. et al. Male-to-Feminine sexual transmission of Zika virus—United States, January–April 2016. Clin. Infect. Dis. 64, 211–213 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Peluso, M. J. et al. Multimodal molecular imaging reveals tissue-based T cell activation and viral RNA persistence for as much as 2 years following COVID-19. Preprint at medRxiv https://doi.org/10.1101/2023.07.27.23293177 (2023).

  • Yao, Q. et al. Lengthy-term dysfunction of style papillae in SARS-CoV-2. NEJM Proof. https://doi.org/10.1056/EVIDoa2300046 (2023).

  • Rendeiro, A. F. et al. Persistent alveolar kind 2 dysfunction and lung structural derangement in post-acute COVID-19. Preprint at medRxiv https://doi.org/10.1101/2022.11.28.22282811 (2022).

  • de Melo, G. D. et al. COVID-19-related anosmia is related to viral persistence and irritation in human olfactory epithelium and mind an infection in hamsters. Sci. Transl. Med. https://doi.org/10.1126/SCITRANSLMED.ABF8396 (2021).

  • Cheung, C. C. L. et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from 5 recovered sufferers with COVID-19. Intestine https://doi.org/10.1136/gutjnl-2021-324280 (2021).

  • Hany, M. et al. Lingering SARS-CoV-2 in gastric and gallbladder tissues of sufferers with earlier COVID-19 an infection present process bariatric surgical procedure. Obes. Surg. 33, 139–148 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miura, C. S. et al. Asymptomatic SARS-COV-2 an infection in youngsters’s tonsils. Braz. J. Otorhinolaryngol. 88, 9 (2022).

    Article 

    Google Scholar
     

  • Stein, S. R. et al. SARS-CoV-2 an infection and persistence within the human physique and mind at post-mortem. Nature 612, 758–763 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roden, A. C. et al. Late issues of COVID-19: a morphologic, imaging, and droplet digital polymerase chain response research of lung tissue. Arch. Pathol. Lab. Med. https://doi.org/10.5858/arpa.2021-0519-sa (2022).

  • Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Support, M. et al. Zika virus persistence within the central nervous system and lymph nodes of rhesus monkeys. Cell 169, 610–620 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mead, P. S. et al. Zika virus shedding in semen of symptomatic contaminated males. N. Engl. J. Med. 378, 1377–1385 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Coffin, Okay. M. et al. Persistent Marburg virus an infection within the testes of nonhuman primate survivors. Cell Host Microbe 24, 405–416 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Q. et al. Adaptive immune responses to SARS-CoV-2 persist within the pharyngeal lymphoid tissue of youngsters. Nat. Immunol. 24, 186–199 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zollner, A. et al. Postacute COVID-19 is characterised by intestine viral antigen persistence in inflammatory bowel ailments. Gastroenterology 163, 495–506 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goh, D. et al. Case report: persistence of residual antigen and RNA of the SARS-CoV-2 virus in tissues of two sufferers with lengthy COVID. Entrance Immunol. 13, 939989 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schultheiß, C. et al. Liquid biomarkers of macrophage dysregulation and circulating spike protein 1 illustrate the organic heterogeneity in sufferers with post-acute sequelae of COVID-19. J. Med. Virol. https://doi.org/10.1002/jmv.28364 (2023).

  • Swank, Z. et al. Persistent circulating SARS-CoV-2 spike is related to post-acute COVID-19 sequelae. Clin. Infect. Dis. https://doi.org/10.1093/CID/CIAC722 (2022).

  • Peluso, M. et al. Plasma-based antigen persistence within the post-acute section of SARS-CoV-2 an infection. Poster presentation. https://www.croiconference.org/summary/plasma-based-antigen-persistence-in-the-post-acute-phase-of-sars-cov-2-infection/ (2023).

  • Ogata, A. F. et al. Circulating extreme acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine antigen detected within the plasma of mRNA-1273 vaccine recipients. Clin. Infect. Dis. 74, 715–718 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peluso, M. J. et al. SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-19. Ann. Neurol. 91, 772–781 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Craddock, V. et al. Persistent circulation of soluble and extracellular vesicle-linked Spike protein in people with postacute sequelae of COVID-19. J. Med. Virol. https://doi.org/10.1002/JMV.28568 (2023).

  • Adaken, C. et al. Ebola virus antibody decay–stimulation in a excessive proportion of survivors. Nature 590, 468–472 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, A. N. et al. Evolution of T cell responses throughout measles virus an infection and RNA clearance. Sci. Rep. 7, 11474 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herati, R. S. et al. PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine. Nat. Immunol. 23, 1183–1192 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herati, R. S. et al. Vaccine-induced ICOS+CD38+ circulating Tfh are delicate biosensors of age-related modifications in inflammatory pathways. Cell Rep. Med. https://doi.org/10.1016/J.XCRM.2021.100262 (2021).

  • Sykulev, Y., Joo, M., Vturina, I., Tsomides, T. J. & Eisen, H. N. Proof {that a} single peptide-MHC complicated on a goal cell can elicit a cytolytic T cell response. Immunity 4, 565–571 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wherry, E. J., Blattman, J. N., Murali-Krishna, Okay., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and ends in distinct levels of useful impairment. J. Virol. 77, 4911–4927 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Appay, V. et al. Reminiscence CD8+ T cells range in differentiation phenotype in several persistent virus infections. Nat. Med. 8, 379–385 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Purbhoo, M. A., Irvine, D. J., Huppa, J. B. & Davis, M. M. T cell killing doesn’t require the formation of a steady mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vibholm, L. Okay. et al. SARS-CoV-2 persistence is related to antigen-specific CD8 T-cell responses. EBioMedicine https://doi.org/10.1016/j.ebiom.2021.103230 (2021).

  • Peluso, M. J. et al. Lengthy-term SARS-CoV-2-specific immune and inflammatory responses in people recovering from COVID-19 with and with out post-acute signs. Cell Rep. https://doi.org/10.1016/J.CELREP.2021.109518 (2021).

  • Littlefield, Okay. M. et al. SARS-CoV-2-specific T cells affiliate with irritation and diminished lung perform in pulmonary post-acute sequalae of SARS-CoV-2. PLoS Pathog. 18, e1010359 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Visvabharathy, L. et al. T cell responses to SARS-CoV-2 in individuals with and with out neurologic signs of lengthy COVID. Preprint at medRxiv https://doi.org/10.1101/2021.08.08.21261763 (2022).

  • Yin, Okay. et al. Lengthy COVID manifests with T cell dysregulation, irritation, and an uncoordinated adaptive immune response to SARS-CoV-2. Preprint at bioRxiv https://doi.org/10.1101/2023.02.09.527892 (2023).

  • Klein, J. et al. Distinguishing options of Lengthy COVID recognized by means of immune profiling. Preprint at medRxiv https://doi.org/10.1101/2022.08.09.22278592 (2022).

  • Santa Cruz, A. et al. Publish-acute sequelae of COVID-19 is characterised by diminished peripheral CD8+ β7 integrin+ T cells and anti-SARS-CoV-2 IgA response. Nat. Commun. 14, 1772 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metcalf, T. U. & Griffin, D. E. Alphavirus-induced encephalomyelitis: antibody-secreting cells and viral clearance from the nervous system. J. Virol. 85, 11490–11501 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metcalf, T. U., Baxter, V. Okay., Nilaratanakul, V. & Griffin, D. E. Recruitment and retention of B cells within the central nervous system in response to alphavirus encephalomyelitis. J. Virol. 87, 2420–2429 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, A. N. et al. Affiliation of persistent wild-type measles virus RNA with long-term humoral immunity in rhesus macaques. JCI Perception https://doi.org/10.1172/JCI.INSIGHT.134992 (2020).

  • Yewdell, W. T. et al. Temporal dynamics of persistent germinal facilities and reminiscence B cell differentiation following respiratory virus an infection. Cell Rep. 37, 109961 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, T. S., Hufford, M. M., Solar, J., Fu, Y. X. & Braciale, T. J. Antigen persistence and the management of native T cell reminiscence by migrant respiratory dendritic cells after acute virus an infection. J. Exp. Med. 207, 1161–1172 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Carvalho, R. V. H. et al. Clonal alternative sustains long-lived germinal facilities primed by respiratory viruses. Cell 186, 131–146 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rashid, F. et al. Roles and capabilities of SARS-CoV-2 proteins in host immune evasion. Entrance. Immunol. https://doi.org/10.3389/FIMMU.2022.940756 (2022).

  • Kee, J. et al. SARS-CoV-2 disrupts host epigenetic regulation by way of histone mimicry. Nature 610, 381–388 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pretorius, E. et al. Persistent clotting protein pathology in Lengthy COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by elevated ranges of antiplasmin. Cardiovasc. Diabetol. https://doi.org/10.1186/s12933-021-01359-7 (2021).

  • Grobbelaar, L. M. et al. SARS-CoV-2 spike protein S1 induces fibrin(ogen) immune to fibrinolysis: implications for microclot formation in COVID-19. Biosci. Rep. https://doi.org/10.1042/BSR20210611 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryu, J. Okay. et al. SARS-CoV-2 spike protein induces irregular inflammatory blood clots neutralized by fibrin immunotherapy. Preprint at bioRxiv https://doi.org/10.1101/2021.10.12.464152 (2021).

  • De Michele, M. et al. Proof of SARS-CoV-2 spike protein on retrieved thrombi from COVID-19 sufferers. J. Hematol. Oncol. 15, 108 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boribong, B. P. et al. Neutrophil profiles of pediatric COVID-19 and multisystem inflammatory syndrome in youngsters. Cell Rep. Med. https://doi.org/10.1016/J.XCRM.2022.100848 (2022).

  • Cervia, C. et al. Immunoglobulin signature predicts threat of post-acute COVID-19 syndrome. Nat Commun. https://doi.org/10.1038/S41467-021-27797-1 (2022).

  • Hadjadj, J. et al. Impaired kind I interferon exercise and inflammatory responses in extreme COVID-19 sufferers. Science 369, 718–724 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gold, J. E., Okyay, R. A., Licht, W. E. & Hurley, D. J. Investigation of lengthy COVID prevalence and its relationship to Epstein–Barr virus reactivation. Pathogens https://doi.org/10.3390/PATHOGENS10060763 (2021).

  • Peluso, M. J. et al. Affect of pre-existing power viral an infection and reactivation on the event of lengthy COVID. J. Clin. Make investments. https://doi.org/10.1172/JCI163669 (2022).

    Article 

    Google Scholar
     

  • Su, Y. et al. A number of early elements anticipate post-acute COVID-19 sequelae. Cell https://doi.org/10.1016/j.cell.2022.01.014 (2022).

  • Gu, L. et al. Dynamic modifications within the microbiome and mucosal immune microenvironment of the decrease respiratory tract by influenza virus an infection. Entrance Microbiol. https://doi.org/10.3389/FMICB.2019.02491 (2019).

  • Kaul, D. et al. Microbiome disturbance and resilience dynamics of the higher respiratory tract throughout influenza A virus an infection. Nat Commun. https://doi.org/10.1038/s41467-020-16429-9 (2020).

  • Eastment, M. C. & McClelland, R. S. Vaginal microbiota and susceptibility to HIV. AIDS 32, 687–698 (2018).

  • Liu, Q. et al. Intestine microbiota dynamics in a potential cohort of sufferers with post-acute COVID-19 syndrome. Intestine 71, 544–552 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giron, L. B. et al. Markers of fungal translocation are elevated throughout post-acute sequelae of SARS-CoV-2 and induce NF-κB signaling. JCI Perception https://doi.org/10.1172/JCI.INSIGHT.160989 (2022).

  • Yonker, L. M. et al. Multisystem inflammatory syndrome in youngsters is pushed by zonulin-dependent lack of intestine mucosal barrier. J. Clin. Make investments. https://doi.org/10.1172/JCI149633 (2021).

  • Wang, W., Uzzau, S., Goldblum, S. E. & Fasano, A. Human zonulin, a possible modulator of intestinal tight junctions. J. Cell Sci. https://doi.org/10.1242/jcs.113.24.4435 (2000).

  • Fasano, A. et al. Zonulin, a newly found modulator of intestinal permeability, and its expression in coeliac illness. Lancet https://doi.org/10.1016/S0140-6736(00)02169-3 (2000).

  • Malik, A. et al. Distorted TCR repertoires outline multisystem inflammatory syndrome in youngsters. PLoS ONE 17, e0274289 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreye, J., Reincke, S. M. & Prüss, H. Do cross-reactive antibodies trigger neuropathology in COVID-19. Nat. Rev. Immunol. 20, 645–646 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanz, T. V. et al. Clonally expanded B cells in a number of sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCusker, R. H. & Kelley, Okay. W. Immune–neural connections: how the immune system’s response to infectious brokers influences conduct. J. Exp. Biol. 216, 84–98 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goehler, L. E. et al. Activation in vagal afferents and central autonomic pathways: early responses to intestinal an infection with Campylobacter jejuni. Mind Behav. Immun. 19, 334–344 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • VanElzakker, M. B. Persistent fatigue syndrome from vagus nerve an infection: a psychoneuroimmunological speculation. Med. Hypotheses 81, 414–423 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Woo, M. S. et al. Vagus nerve irritation contributes to dysautonomia in COVID-19. Acta Neuropathol. 146, 387–394 (2023).

  • Matschke, J. et al. Neuropathology of sufferers with COVID-19 in Germany: a autopsy case sequence. Lancet Neurol. 19, 919–929 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Track, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse mind. J. Exp. Med. https://doi.org/10.1084/JEM.20202135 (2021).

  • Wang, L. et al. Affiliation of COVID-19 with new-onset Alzheimer’s illness. J. Alzheimers Dis. 89, 411–414 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhodes, C. H., Priemer, D. S., Karlovich, E., Perl, D. P. & Goldman, J. β-amyloid deposits in younger COVID sufferers. SSRN Digital Journal https://doi.org/10.2139/SSRN.4003213 (2022).

  • Soscia, S. J. et al. The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS ONE https://doi.org/10.1371/JOURNAL.PONE.0009505 (2010).

  • Eimer, W. A. et al. Alzheimer’s disease-associated β-amyloid is quickly seeded by herpesviridae to guard towards mind an infection. Neuron 99, 56–63 (2018).

    Article 

    Google Scholar
     

  • Kumar, D. Okay. V. et al. Amyloid-β peptide protects towards microbial an infection in mouse and worm fashions of Alzheimer’s illness. Sci. Transl. Med. 8, 340ra72 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Aung, A. et al. Low protease exercise in B cell follicles promotes retention of intact antigens after immunization. Science https://doi.org/10.1126/SCIENCE.ABN8934/SUPPL_FILE/SCIENCE.ABN8934_MDAR_REPRODUCIBILITY_CHECKLIST.PDF (2023).

  • Griffin, D. E. Why does viral RNA generally persist after restoration from acute infections? PLoS Biol. 20, e3001687 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emmler, L. et al. Feline coronavirus with and with out spike gene mutations detected by real-time RT–PCRs in cats with feline infectious peritonitis. J. Feline Med. Surg. 22, 791–799 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Arshad, N. et al. SARS-CoV-2 accent proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I floor expression. Proc. Natl Acad. Sci. 120, e2208525120120 (2023).

  • Moriyama, M., Lucas, C., Monteiro, V. S., Yale SARS-CoV-2 Genomic Surveillance Initiative & Iwasaki, A. SARS-CoV-2 Omicron subvariants advanced to advertise additional escape from MHC-I recognition. Preprint at bioRxiv https://doi.org/10.1101/2022.05.04.490614 (2022).

  • Peluso, M. J. et al. Impact of oral nirmatrelvir on Lengthy COVID signs: a case sequence. https://doi.org/10.21203/RS.3.RS-1617822/V2 (2022).

  • Geng, L. N., Bonilla, H. F., Shafer, R. W., Miglis, M. G., Yang, P. C. Case report of breakthrough lengthy COVID and the usage of nirmatrelvir-ritonavir. Preprint at Analysis Sq. https://doi.org/10.21203/rs.3.rs-1443341/v1 (2022).

  • Schultz, D. C. et al. Pyrimidine inhibitors synergize with nucleoside analogues to dam SARS-CoV-2. Nature 604, 134–140 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly Z. Nirmatrelvir and the danger of post-acute sequelae of COVID-19. Preprint at medRxiv https://doi.org/10.1101/2022.11.03.22281783 (2022).

  • Yonker, L. M. et al. Zonulin antagonist, Larazotide (AT1001), as an adjuvant therapy for multisystem inflammatory syndrome in youngsters: a case sequence. Crit. Care Explor. 4, e0641 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Proal, A. & Marshall, T. Myalgic encephalomyelitis/power fatigue syndrome within the period of the human microbiome: persistent pathogens drive power signs by interfering with host metabolism, gene expression, and immunity. Entrance. Pediatr. https://doi.org/10.3389/fped.2018.00373 (2018).

  • Bjornevik, Okay. et al. Longitudinal evaluation reveals excessive prevalence of Epstein–Barr virus related to a number of sclerosis. Science 375, 296–301 (2022).

  • Harley, J. B. et al. Transcription elements function throughout illness loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 50, 699–707 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung, C. C. L. et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from 5 recovered sufferers with COVID-19. Intestine 71, 226–229 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Natarajan, A. et al. Gastrointestinal signs and fecal shedding of SARS-CoV-2 RNA recommend extended gastrointestinal an infection. Med. 3, 371–387 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, J. C. et al. SARS-CoV-2 detected in neonatal stool distant from maternal COVID-19 throughout being pregnant. Pediatr. Res. https://doi.org/10.1038/s41390-022-02266-7 (2022).

  • Tejerina, F. et al. Publish-COVID-19 syndrome. SARS-CoV-2 RNA detection in plasma, stool, and urine in sufferers with persistent signs after COVID-19. BMC Infect. Dis. 22, 211 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Read More

    Recent