Mirusviruses hyperlink herpesviruses to massive viruses

0
39


  • Vincent, F., Sheyn, U., Porat, Z., Schatz, D. & Vardi, A. Visualizing lively viral an infection reveals numerous cell fates in synchronized algal bloom demise. Proc. Natl Acad. Sci. USA 118, e2021586118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suttle, C. A. Marine viruses — main gamers within the world ecosystem. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro1750 (2007).

  • Irwin, N. A. T., Pittis, A. A., Richards, T. A. & Keeling, P. J. Systematic analysis of horizontal gene switch between eukaryotes and viruses. Nat. Microbiol. 7, 327–336 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moniruzzaman, M., Weinheimer, A. R., Martinez-Gutierrez, C. A. & Aylward, F. O. Widespread endogenization of big viruses shapes genomes of inexperienced algae. Nature https://doi.org/10.1038/s41586-020-2924-2 (2020).

  • Koonin, E. V., Dolja, V. V. & Krupovic, M. Origins and evolution of viruses of eukaryotes: the last word modularity. Virology 479–480, 2–25 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Koonin, E. V. et al. World group and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 84, e00061-19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krupovic, M., Dolja, V. V. & Koonin, E. V. The LUCA and its complicated virome. Nat. Rev. Microbiol. 18, 661–670 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krupovic, M. & Koonin, E. V. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol. 13, 105–115 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guglielmini, J., Woo, A. C., Krupovic, M., Forterre, P. & Gaia, M. Diversification of big and enormous eukaryotic dsDNA viruses predated the origin of contemporary eukaryotes. Proc. Natl Acad. Sci. USA 116, 19585–19592 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woo, A. C., Gaia, M., Guglielmini, J., da Cunha, V. & Forterre, P. Phylogeny of the Varidnaviria morphogenesis module: congruence and incongruence with the tree of life and viral taxonomy. Entrance. Microbiol. 12, 1708 (2021).

    Article 

    Google Scholar
     

  • Schulz, F. et al. Big virus range and host interactions by means of world metagenomics. Nature https://doi.org/10.1038/s41586-020-1957-x (2020).

  • Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complicated virocell metabolism of globally-distributed big viruses. Nat. Commun. 11, 1710 (2020).

    Article 

    Google Scholar
     

  • Endo, H. et al. Biogeography of marine big viruses reveals their interaction with eukaryotes and ecological capabilities. Nat. Ecol. Evol. 4, 1639–1649 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Mann, N. H. Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol. Rev. 27, 17–34 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaneko, H. et al. Eukaryotic virus composition can predict the effectivity of carbon export within the world ocean. iScience 24, 102002 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laber, C. P. et al. Coccolithovirus facilitation of carbon export within the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sunagawa, S. et al. Tara Oceans: in direction of world ocean ecosystems biology. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0364-5 (2020).

  • Delmont, T. O. et al. Heterotrophic bacterial diazotrophs are extra ample than their cyanobacterial counterparts in metagenomes masking a lot of the sunlit ocean. ISME J. https://doi.org/10.1038/s41396-021-01135-1 (2021).

  • Delmont, T. O. et al. Purposeful repertoire convergence of distantly associated eukaryotic plankton lineages ample within the sunlit ocean. Cell Genomics https://doi.org/10.1016/J.XGEN.2022.100123 (2022).

  • Aylward, F. O., Moniruzzaman, M., Ha, A. D. & Koonin, E. V. A phylogenomic framework for charting the variety and evolution of big viruses. PLoS Biol. 19, e3001430 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Vargas, C. et al. Eukaryotic plankton range within the sunlit ocean. Science 348, 1261605 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Carradec, Q. et al. A world ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihara, T. et al. Taxon richness of ‘Megaviridae’ exceeds these of Micro organism and Archaea within the ocean. Microbes Environ. 33, 162–171 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okoye, M. E., Sexton, G. L., Huang, E., McCaffery, J. M. & Desai, P. Purposeful evaluation of the triplex proteins (VP19C and VP23) of herpes simplex virus kind 1. J. Virol. 80, 929–940 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Atomic construction of the human herpesvirus 6B capsid and capsid-associated tegument complexes. Nat. Commun. 10, 5346 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duda, R. L. & Teschke, C. M. The superb HK97 fold: versatile outcomes of modest variations. Curr. Opin. Virol. 36, 9–16 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, J. et al. Capsids and genomes of jumbo-sized bacteriophages reveal the evolutionary attain of the HK97 fold. mBio 8, e01579-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kazlauskas, D., Krupovic, M., Guglielmini, J., Forterre, P. & Venclovas, C. S. Range and evolution of B-family DNA polymerases. Nucleic Acids Res. 48, 10142 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paoli, L. et al. Biosynthetic potential of the worldwide ocean microbiome. Nature https://doi.org/10.1038/s41586-022-04862-3 (2022).

  • Legendre, M. et al. Range and evolution of the rising Pandoraviridae household. Nat. Commun. 9, 2285 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talbert, P. B., Armache, Okay. J. & Henikoff, S. Viral histones: pickpocket’s prize or primordial progenitor? Epigenetics Chromatin 15, 21 (2022).

    Article 

    Google Scholar
     

  • Hososhima, S. et al. Proton-transporting heliorhodopsins from marine big viruses. Elife 11, e78416 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weinheimer, A. R. & Aylward, F. O. An infection technique and biogeography distinguish cosmopolitan teams of marine jumbo bacteriophages. ISME J. https://doi.org/10.1038/s41396-022-01214-x (2022).

  • Al-Shayeb, B. et al. Clades of big phages from throughout Earth’s ecosystems. Nature 578, 425–431 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weinheimer, A. R. & Aylward, F. O. A definite lineage of Caudovirales that encodes a deeply branching multi-subunit RNA polymerase. Nat. Commun. 11, 4506 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adler, B., Sattler, C. & Adler, H. Herpesviruses and their host cells: a profitable liaison. Tendencies Microbiol. 25, 229–241 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yutin, N., Shevchenko, S., Kapitonov, V., Krupovic, M. & Koonin, E. V. A novel group of numerous Polinton-like viruses found by metagenome evaluation. BMC Biol. 13, 95 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boratto, P. V. M. et al. Yaravirus: a novel 80-nm virus infecting Acanthamoeba castellanii. Proc. Natl Acad. Sci. USA 117, 16579–16586 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D., Liu, C. M., Luo, R., Sadakane, Okay. & Lam, T. W. MEGAHIT: an ultra-fast single-node resolution for big and complicated metagenomics meeting through succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2014).

    Article 

    Google Scholar
     

  • Eren, A. M. et al. Anvi’o: a sophisticated evaluation and visualization platform for ‘omics knowledge. PeerJ 3, e1319 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eren, A. M. et al. Neighborhood-led, built-in, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation web site identification. BMC Bioinform. 11, 119 (2010).

    Article 

    Google Scholar
     

  • Li, H. & Durbin, R. Quick and correct brief learn alignment with Burrows-Wheeler remodel. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alneberg, J. et al. Binning metagenomic contigs by protection and composition. Nat. Strategies 11, 1144–1146 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. & Godzik, A. Cd-hit: a quick program for clustering and evaluating massive units of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katoh, Okay. & Standley, D. M. MAFFT a number of sequence alignment software program model 7: enhancements in efficiency and usefulness. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. Okay. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: quick mannequin choice for correct phylogenetic estimates. Nat. Strategies 14, 587–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a quick and efficient stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delmont, T. O. & Eren, A. M. Figuring out contamination with superior visualization and evaluation practices: metagenomic approaches for eukaryotic genome assemblies. PeerJ 4, e1839 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Needham, D. M. et al. Focused metagenomic restoration of 4 divergent viruses reveals shared and distinctive traits of big viruses of marine eukaryotes. Philos. Trans. R. Soc. B 374, 20190086 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Quick algorithms for large-scale genome alignment and comparability. Nucleic Acids Res. 30, 2478–2483 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Primary native alignment search software. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshikawa, G. et al. Medusavirus, a novel massive DNA virus found from scorching spring water. J. Virol. 93, e02130-18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guindon, S. et al. New algorithms and strategies to estimate maximum-likelihood phylogenies: assessing the efficiency of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: enhancing the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menardo, F. et al. Treemmer: a software to cut back massive phylogenetic datasets with minimal lack of range. BMC Bioinform. 19, 164 (2018).

    Article 

    Google Scholar
     

  • Wang, H. C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling web site heterogeneity with posterior imply web site frequency profiles accelerates correct phylogenomic estimation. Syst. Biol. 67, 216–235 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are ample in floor ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: fixing elementary biases in complete genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanni, C. et al. Unifying the identified and unknown microbial coding sequence house. Elife 11, e67667 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabler, F. et al. Protein sequence evaluation utilizing the MPI Bioinformatics Toolkit. Curr. Protoc. Bioinform. 72, e108 (2020).

  • Steinegger, M. et al. HH-suite3 for quick distant homology detection and deep protein annotation. BMC Bioinform. 20, 473 (2019).

    Article 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Strategies 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baek, M. et al. Correct prediction of protein buildings and interactions utilizing a three-track neural community. Science 373, 871–876 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pruitt, Okay. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters: a complete and scalable different for enhancing sequence similarity searches. Bioinformatics 31, 926–932 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yutin, N., Wolf, Y. I., Raoult, D. & Koonin, E. V. Eukaryotic massive nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol. J. 6, 223 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Quick and delicate protein alignment utilizing DIAMOND. Nat. Strategies 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology useful resource based mostly on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of switch RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Kempen, M. et al. Quick and correct protein construction search with Foldseek. Preprint at bioRxiv https://doi.org/10.1101/2022.02.07.479398 (2022).

  • Hauser, M., Steinegger, M. & Söding, J. MMseqs software program suite for quick and deep clustering and looking of enormous protein sequence units. Bioinformatics 32, 1323–1330 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finn, R. D., Clements, J. & Eddy, S. R. HMMER net server: interactive sequence similarity looking. Nucleic Acids Res. 39, W29–W37 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here