Identification of the flavivirus conserved residues within the envelope protein hinge area for the rational design of a candidate West Nile live-attenuated vaccine


  • Pierson, T. C. & Diamond, M. S. The continued menace of rising flaviviruses. Nat. Microbiol. 5, 796–812 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaiser, J. A., Wang, T. & Barrett, A. D. Virulence determinants of West Nile virus: how can these be used for vaccine design? Future Virol. 12, 283–295 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arroyo, J. et al. ChimeriVax-West Nile virus live-attenuated vaccine: preclinical analysis of security, immunogenicity, and efficacy. J. Virol. 78, 12497–12507 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaiser, J. A. et al. Genotypic and phenotypic characterization of West Nile virus NS5 methyltransferase mutants. Vaccine 37, 7155–7164 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G. et al. An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses. NPJ Vaccines 4, 48 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zust, R. et al. Rational design of a dwell attenuated dengue vaccine: 2’-o-methyltransferase mutants are extremely attenuated and immunogenic in mice and macaques. PLoS Pathog. 9, e1003521 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wicker, J. A. et al. A single amino acid substitution within the central portion of the West Nile virus NS4B protein confers a extremely attenuated phenotype in mice. Virology 349, 245–253 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crabtree, M. B., Kinney, R. M. & Miller, B. R. Deglycosylation of the NS1 protein of dengue 2 virus, pressure 16681: building and characterization of mutant viruses. Arch. Virol. 150, 771–786 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whiteman, M. C. et al. Growth and characterization of non-glycosylated E and NS1 mutant viruses as a possible candidate vaccine for West Nile virus. Vaccine 28, 1075–1083 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muylaert, I. R., Chambers, T. J., Galler, R. & Rice, C. M. Mutagenesis of the N-linked glycosylation websites of the yellow fever virus NS1 protein: results on virus replication and mouse neurovirulence. Virology 222, 159–168 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hurrelbrink, R. J. & McMinn, P. C. Molecular determinants of virulence: the structural and useful foundation for flavivirus attenuation. Adv. Virus Res. 60, 1–42 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuno, G., Chang, G. J., Tsuchiya, Okay. R., Karabatsos, N. & Cropp, C. B. Phylogeny of the genus Flavivirus. J. Virol. 72, 73–83 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. A mutation within the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 pressure of West Nile virus. Virology 353, 35–40 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C. Y. et al. The dengue virus kind 2 envelope protein fusion peptide is crucial for membrane fusion. Virology 396, 305–315 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Close to-atomic construction of Japanese encephalitis virus reveals essential determinants of virulence and stability. Nat. Commun. 8, 14 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A decision. Nature 375, 291–298 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allison, S. L., Schalich, J., Stiasny, Okay., Mandl, C. W. & Heinz, F. X. Mutational proof for an inner fusion peptide in flavivirus envelope protein E. J. Virol. 75, 4268–4275 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhn, R. J. et al. Construction of dengue virus: implications for flavivirus group, maturation, and fusion. Cell 108, 717–725 (2002).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Allison, S. L. et al. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 69, 695–700 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Construction of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket within the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA 100, 6986–6991 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanai, R. et al. Crystal construction of west nile virus envelope glycoprotein reveals viral floor epitopes. J. Virol. 80, 11000–11008 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bressanelli, S. et al. Construction of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 23, 728–738 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cecilia, D. & Gould, E. A. Nucleotide adjustments answerable for lack of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181, 70–77 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beasley, D. W. & Aaskov, J. G. Epitopes on the dengue 1 virus envelope protein acknowledged by neutralizing IgM monoclonal antibodies. Virology 279, 447–458 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Wispelaere, M. et al. Inhibition of flaviviruses by focusing on a conserved pocket on the viral envelope protein. Cell Chem. Biol. 25, 1006–1016.e1008 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monath, T. P. et al. Single mutation within the flavivirus envelope protein hinge area will increase neurovirulence for mice and monkeys however decreases viscerotropism for monkeys: relevance to growth and security testing of dwell, attenuated vaccines. J. Virol. 76, 1932–1943 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, E., Weir, R. C. & Dalgarno, L. Modifications within the dengue virus main envelope protein on passaging and their localization on the three-dimensional construction of the protein. Virology 232, 281–290 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlesinger, J. J. et al. Replication of yellow fever virus within the mouse central nervous system: comparability of neuroadapted and non-neuroadapted virus and partial sequence evaluation of the neuroadapted pressure. J. Gen. Virol. 77, 1277–1285 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McMinn, P. C., Weir, R. C. & Dalgarno, L. A mouse-attenuated envelope protein variant of Murray Valley encephalitis virus with altered fusion exercise. J. Gen. Virol. 77, 2085–2088 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Butrapet, S. et al. Amino acid adjustments throughout the E protein hinge area that have an effect on dengue virus kind 2 infectivity and fusion. Virology 413, 118–127 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinney, R. M. et al. Avian virulence and thermostable replication of the North American pressure of West Nile virus. J. Gen. Virol. 87, 3611–3622 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whiteman, M. C. et al. A number of amino acid adjustments on the first glycosylation motif in NS1 protein of West Nile virus are obligatory for full attenuation for mouse neuroinvasiveness. Vaccine 29, 9702–9710 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beasley, D. W. et al. Envelope protein glycosylation standing influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J. Virol. 79, 8339–8347 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaiser, J. A. & Barrett, A. D. T. Twenty years of progress towards West Nile virus vaccine growth. Viruses 11, 823 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muraki, Y. et al. The efficacy of inactivated West Nile vaccine (WN-VAX) in mice and monkeys. Virol. J. 12, 54 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferguson, M. et al. WHO Working Group on technical specs for manufacture and analysis of yellow fever vaccines, Geneva, Switzerland, 13-14 Could 2009. Vaccine 28, 8236–8245 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trent, D. W. et al. WHO working group on the standard, security and efficacy of japanese encephalitis vaccines (dwell attenuated) for human use, Bangkok, Thailand, 21-23 February 2012. Biologicals 41, 450–457 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Thomas, S. J. & Yoon, I. Okay. A evaluation of Dengvaxia(R): growth to deployment. Hum. Vaccin Immunother. 15, 2295–2314 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaiser, J. A. et al. Japanese encephalitis vaccine-specific envelope protein E138K mutation doesn’t attenuate virulence of West Nile virus. NPJ Vaccines 4, 50 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goo, L., VanBlargan, L. A., Dowd, Okay. A., Diamond, M. S. & Pierson, T. C. A single mutation within the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathog. 13, e1006178 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hurrelbrink, R. J. & McMinn, P. C. Attenuation of Murray Valley encephalitis virus by site-directed mutagenesis of the hinge and putative receptor-binding areas of the envelope protein. J. Virol. 75, 7692–7702 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Man, B. et al. Preclinical and medical growth of YFV 17D-based chimeric vaccines in opposition to dengue, West Nile and Japanese encephalitis viruses. Vaccine 28, 632–649 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. Okay. et al. Cryo-EM construction of the mature dengue virus at 3.5-angstrom decision. Nat. Struct. Mol. Biol. 20, 105–U133 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Moratorio, G., Iriarte, A., Moreno, P., Musto, H. & Cristina, J. An in depth comparative evaluation on the general codon utilization patterns in West Nile virus. Infect. Genet. Evol. 14, 396–400 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kudlacek, S. T. et al. Designed, extremely expressing, thermostable dengue virus 2 envelope protein dimers elicit quaternary epitope antibodies. Sci. Adv. 7, eabg4084 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onofrio, A. et al. Distance-dependent hydrophobic-hydrophobic contacts in protein folding simulations. Phys. Chem. Chem. Phys. 16, 18907–18917 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, H. et al. Interplay of yellow fever virus French neurotropic vaccine pressure with monkey mind: characterization of monkey mind membrane receptor escape variants. J. Virol. 74, 2903–2906 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christian, E. A. et al. Atomic-level useful mannequin of dengue virus Envelope protein infectivity. Proc. Natl. Acad. Sci. USA 110, 18662–18667 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibbons, D. L. et al. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guardado-Calvo, P. et al. Mechanistic perception into bunyavirus-induced membrane fusion from structure-function analyses of the hantavirus envelope glycoprotein Gc. PLoS Pathog. 12, e1005813 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serris, A. et al. The hantavirus floor glycoprotein lattice and its fusion management mechanism. Cell 183, 442–456.e416 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monera, O. D., Sereda, T. J., Zhou, N. E., Kay, C. M. & Hodges, R. S. Relationship of sidechain hydrophobicity and alpha-helical propensity on the steadiness of the single-stranded amphipathic alpha-helix. J. Pept. Sci. 1, 319–329 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovacs, J. M., Mant, C. T. & Hodges, R. S. Willpower of intrinsic hydrophilicity/hydrophobicity of amino acid facet chains in peptides within the absence of nearest-neighbor or conformational results. Biopolymers 84, 283–297 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beasley, D. W. et al. Restricted evolution of West Nile virus has occurred throughout its southwesterly unfold in the USA. Virology 309, 190–195 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chao, D. Y., Davis, B. S. & Chang, G. J. Growth of multiplex real-time reverse transcriptase PCR assays for detecting eight medically necessary flaviviruses in mosquitoes. J. Clin. Microbiol. 45, 584–589 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clarke, D. H. & Casals, J. Methods for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. Am. J. Trop. Med. Hyg. 7, 561–573 (1958).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyons, A. C. et al. Shedding of Japanese encephalitis virus in oral fluid of contaminated swine. Vector Borne Zoonotic. Dis. 18, 469–474 (2018).

  • Roehrig, J. T., Hombach, J. & Barrett, A. D. Tips for plaque-reduction neutralization testing of human antibodies to dengue viruses. Viral Immunol. 21, 123–132 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Read More

    Recent