Genetic variants of Dabie bandavirus: classification and organic/medical implications | Virology Journal

0
42


  • Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Solar YL, Zhang L, Zhang QF, Popov VL, Li C, et al. Fever with thrombocytopenia related to a novel bunyavirus in China. N Engl J Med. 2011;364:1523–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li DX. Fever with thrombocytopenia related to a novel bunyavirus in China. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2011;25:81–4.

    PubMed 

    Google Scholar
     

  • Jiang XL, Zhang S, Jiang M, Bi ZQ, Liang MF, Ding SJ, Wang SW, Liu JY, Zhou SQ, Zhang XM, et al. A cluster of person-to-person transmission instances brought on by SFTS virus in Penglai, China. Clin Microbiol Infect. 2015;21:274–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding S, Niu G, Xu X, Li J, Zhang X, Yin H, Zhang N, Jiang X, Wang S, Liang M, et al. Age is a essential threat issue for extreme fever with thrombocytopenia syndrome. PLoS ONE. 2014;9: e111736.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang MS, Woo JH. Extreme fever with thrombocytopenia syndrome: tick-mediated viral illness. J Korean Med Sci. 2013;28:795–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan J, Wang Q, Cheng J, Hu B, Li J, Zhan F, Track Y, Guo D. Present standing of extreme fever with thrombocytopenia syndrome in China. Virol Sin. 2017;32:51–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casel MA, Park SJ, Choi YK. Extreme fever with thrombocytopenia syndrome virus: rising novel phlebovirus and their management technique. Exp Mol Med. 2021;53:713–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran XC, Yun Y, Van An L, Kim SH, Thao NTP, Man PKC, Yoo JR, Heo ST, Cho NH, Lee KH. Endemic extreme fever with thrombocytopenia syndrome, Vietnam. Emerg Infect Dis. 2019;25:1029–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ministry of Well being P. Guideline for prevention and therapy of sever fever with thrombocytopenia syndrome (2010 vesrion). Chin J Clin Infect Dis 2010.

  • Yun SM, Park SJ, Kim YI, Park SW, Yu MA, Kwon HI, Kim EH, Yu KM, Jeong HW, Ryou J, et al. Genetic and pathogenic variety of extreme fever with thrombocytopenia syndrome virus (SFTSV) in South Korea. JCI Perception. 2020;5:e129531.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76:159–216.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Bao C, Hu J, Gao C, Zhang N, Xiang H, Cardona CJ, Xing Z. Susceptibility of noticed doves (Streptopelia chinensis) to experimental an infection with the extreme fever with thrombocytopenia syndrome phlebovirus. PLoS Negl Trop Dis. 2019;13: e0006982.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofmann H, Li X, Zhang X, Liu W, Kuhl A, Kaup F, Soldan SS, Gonzalez-Scarano F, Weber F, He Y, Pohlmann S. Extreme fever with thrombocytopenia virus glycoproteins are focused by neutralizing antibodies and might use DC-SIGN as a receptor for pH-dependent entry into human and animal cell traces. J Virol. 2013;87:4384–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Kooyk Y. C-type lectins on dendritic cells: key modulators for the induction of immune responses. Biochem Soc Trans. 2008;36:1478–81.

    Article 
    PubMed 

    Google Scholar
     

  • Solar Y, Qi Y, Liu C, Gao W, Chen P, Fu L, Peng B, Wang H, Jing Z, Zhong G, Li W. Nonmuscle myosin heavy chain IIA is a essential issue contributing to the effectivity of early an infection of extreme fever with thrombocytopenia syndrome virus. J Virol. 2014;88:237–48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009;10:778–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santiago FW, Covaleda LM, Sanchez-Aparicio MT, Silvas JA, Diaz-Vizarreta AC, Patel JR, Popov V, Yu XJ, Garcia-Sastre A, Aguilar PV. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic buildings correlates with the inhibition of sort I interferon responses. J Virol. 2014;88:4572–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitagawa Y, Sakai M, Shimojima M, Saijo M, Itoh M, Gotoh B. Nonstructural protein of extreme fever with thrombocytopenia syndrome phlebovirus targets STAT2 and never STAT1 to inhibit sort I interferon-stimulated JAK-STAT signaling. Microbes Infect. 2018;20:360–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin C, Track J, Han Y, Li C, Qiu P, Liang M. Inclusion our bodies are shaped in SFTSV-infected human macrophages. Bing Du Xue Bao. 2016;32:19–25.

    PubMed 

    Google Scholar
     

  • Walter CT, Bento DF, Alonso AG, Barr JN. Amino acid modifications throughout the Bunyamwera virus nucleocapsid protein differentially have an effect on the mRNA transcription and RNA replication actions of assembled ribonucleoprotein templates. J Gen Virol. 2011;92:80–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hornak KE, Lanchy JM, Lodmell JS. RNA encapsidation and packaging within the phleboviruses. Viruses. 2016;8:194.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferron F, Weber F, de la Torre JC, Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res. 2017;234:118–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poranen MM, Paatero AO, Tuma R, Bamford DH. Self-assembly of a viral molecular machine from purified protein and RNA constituents. Mol Cell. 2001;7:845–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogel D, Thorkelsson SR, Quemin ERJ, Meier Ok, Kouba T, Gogrefe N, Busch C, Reindl S, Gunther S, Cusack S, et al. Structural and practical characterization of the extreme fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Res. 2020;48:5749–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reguera J, Weber F, Cusack S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease area, important for viral cap-dependent transcription. PLoS Pathog. 2010;6: e1001101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reguera J, Gerlach P, Rosenthal M, Gaudon S, Coscia F, Gunther S, Cusack S. Comparative structural and practical evaluation of bunyavirus and arenavirus cap-snatching endonucleases. PLoS Pathog. 2016;12: e1005636.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones R, Lessoued S, Meier Ok, Devignot S, Barata-Garcia S, Mate M, Bragagnolo G, Weber F, Rosenthal M, Reguera J. Construction and performance of the Toscana virus cap-snatching endonuclease. Nucleic Acids Res. 2019;47:10914–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noda Ok, Tsuda Y, Kozawa F, Igarashi M, Shimizu Ok, Arikawa J, Yoshimatsu Ok. The polarity of an amino acid at place 1891 of extreme fever with thrombocytopenia syndrome virus L protein is essential for the polymerase exercise. Viruses. 2020;13:33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gogrefe N, Reindl S, Gunther S, Rosenthal M. Construction of a practical cap-binding area in Rift Valley fever virus L protein. PLoS Pathog. 2019;15: e1007829.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subbarao EK, London W, Murphy BR. A single amino acid within the PB2 gene of influenza A virus is a determinant of host vary. J Virol. 1993;67:1761–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mok CK, Lee HH, Lestra M, Nicholls JM, Chan MC, Sia SF, Zhu H, Poon LL, Guan Y, Peiris JS. Amino acid substitutions in polymerase fundamental protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol. 2014;88:3568–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishio S, Tsuda Y, Ito R, Shimizu Ok, Yoshimatsu Ok, Arikawa J. Institution of subclones of the extreme fever with thrombocytopenia syndrome virus YG1 pressure chosen utilizing low pH-dependent cell fusion exercise. Jpn J Infect Dis. 2017;70:388–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuda Y, Igarashi M, Ito R, Nishio S, Shimizu Ok, Yoshimatsu Ok, Arikawa J. The amino acid at place 624 within the glycoprotein of SFTSV (extreme fever with thrombocytopenia virus) performs a essential position in low-pH-dependent cell fusion exercise. Biomed Res. 2017;38:89–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Modis Y, Ogata S, Clements D, Harrison SC. Construction of the dengue virus envelope protein after membrane fusion. Nature. 2004;427:313–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dessau M, Modis Y. Crystal construction of glycoprotein C from Rift Valley fever virus. Proc Natl Acad Sci U S A. 2013;110:1696–701.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halldorsson S, Behrens AJ, Harlos Ok, Huiskonen JT, Elliott RM, Crispin M, Brennan B, Bowden TA. Construction of a phleboviral envelope glycoprotein reveals a consolidated mannequin of membrane fusion. Proc Natl Acad Sci U S A. 2016;113:7154–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filone CM, Heise M, Doms RW, Bertolotti-Ciarlet A. Improvement and characterization of a Rift Valley fever virus cell-cell fusion assay utilizing alphavirus replicon vectors. Virology. 2006;356:155–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lozach PY, Mancini R, Bitto D, Meier R, Oestereich L, Overby AK, Pettersson RF, Helenius A. Entry of bunyaviruses into mammalian cells. Cell Host Microbe. 2010;7:488–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tani H, Kawachi Ok, Kimura M, Taniguchi S, Shimojima M, Fukushi S, Igarashi M, Morikawa S, Saijo M. Identification of the amino acid residue necessary for fusion of extreme fever with thrombocytopenia syndrome virus glycoprotein. Virology. 2019;535:102–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brennan B, Li P, Zhang S, Li A, Liang M, Li D, Elliott RM. Reverse genetics system for extreme fever with thrombocytopenia syndrome virus. J Virol. 2015;89:3026–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yun SM, Park SJ, Park SW, Choi W, Jeong HW, Choi YK, Lee WJ. Molecular genomic characterization of tick- and human-derived extreme fever with thrombocytopenia syndrome virus isolates from South Korea. PLoS Negl Trop Dis. 2017;11: e0005893.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu JW, Zhao L, Luo LM, Liu MM, Solar Y, Su X, Yu XJ. Molecular evolution and spatial transmission of extreme fever with thrombocytopenia syndrome virus based mostly on full genome sequences. PLoS ONE. 2016;11: e0151677.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yun MR, Ryou J, Choi W, Lee JY, Park SW, Kim DW. Genetic variety and evolutionary historical past of Korean isolates of extreme fever with thrombocytopenia syndrome virus from 2013–2016. Arch Virol. 2020;165:2599–603.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Chen W, Yang Y, Jiang Y. Molecular evolution of fever, thrombocytopenia and leukocytopenia virus (FTLSV) based mostly on whole-genome sequences. Infect Genet Evol. 2016;39:55–63.

    Article 
    PubMed 

    Google Scholar
     

  • Huang X, Liu L, Du Y, Wu W, Wang H, Su J, Tang X, Liu Q, Yang Y, Jiang Y, et al. The evolutionary historical past and spatiotemporal dynamics of the fever, thrombocytopenia and leukocytopenia syndrome virus (FTLSV) in China. PLoS Negl Trop Dis. 2014;8: e3237.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu Y, Li S, Zhang Z, Man S, Li X, Zhang W, Zhang C, Cheng X. Phylogeographic evaluation of extreme fever with thrombocytopenia syndrome virus from Zhoushan Islands, China: implication for transmission throughout the ocean. Sci Rep. 2016;6:19563.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freire CC, Iamarino A, Soumare PO, Faye O, Sall AA, Zanotto PM. Reassortment and distinct evolutionary dynamics of Rift Valley fever virus genomic segments. Sci Rep. 2015;5:11353.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flick R, Whitehouse CA. Crimean-Congo hemorrhagic fever virus. Curr Mol Med. 2005;5:753–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S. Molecular evolution of Crimean-Congo hemorrhagic fever virus based mostly on full genomes. J Gen Virol. 2013;94:843–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osiowy C, Giles E, Tanaka Y, Mizokami M, Minuk GY. Molecular evolution of hepatitis B virus over 25 years. J Virol. 2006;80:10307–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saitou N, Nei M. Polymorphism and evolution of influenza A virus genes. Mol Biol Evol. 1986;3:57–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi T, Maeda Ok, Suzuki T, Ishido A, Shigeoka T, Tominaga T, Kamei T, Honda M, Ninomiya D, Sakai T, et al. The primary identification and retrospective examine of extreme fever with thrombocytopenia syndrome in Japan. J Infect Dis. 2014;209:816–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshikawa T, Shimojima M, Fukushi S, Tani H, Fukuma A, Taniguchi S, Singh H, Suda Y, Shirabe Ok, Toda S, et al. Phylogenetic and geographic relationships of extreme fever with thrombocytopenia syndrome virus in China, South Korea, and Japan. J Infect Dis. 2015;212:889–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv Q, Zhang H, Tian L, Zhang R, Zhang Z, Li J, Tong Y, Fan H, Carr MJ, Shi W. Novel sub-lineages, recombinants and reassortants of extreme fever with thrombocytopenia syndrome virus. Ticks Tick Borne Dis. 2017;8:385–90.

    Article 
    PubMed 

    Google Scholar
     

  • Li Z, Hu J, Cui L, Hong Y, Liu J, Li P, Guo X, Liu W, Wang X, Qi X, et al. Elevated prevalence of extreme fever with thrombocytopenia syndrome in Japanese China clustered with a number of genotypes and reasserted virus throughout 2010–2015. Sci Rep. 2017;7:6503.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Search engine optimization MG, Noh BE, Lee HS, Kim TK, Track BG, Lee HI. Nationwide temporal and geographical distribution of tick populations and phylogenetic evaluation of extreme fever with thrombocytopenia syndrome virus in ticks in Korea, 2020. Microorganisms. 2021;9:1630.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Moon Ok, Kim M, Lee WG, Lee HI, Park JK, Kim YH. Seasonal distribution of Haemaphysalis longicornis (Acari: Ixodidae) and detection of SFTS virus in Gyeongbuk Province, Republic of Korea, 2018. Acta Trop. 2021;221: 106012.

    Article 
    PubMed 

    Google Scholar
     

  • Rim JM, Han SW, Cho YK, Kang JG, Choi KS, Jeong H, Son Ok, Kim J, Choi Y, Kim WM, et al. Survey of extreme fever with thrombocytopenia syndrome virus in wild boar within the Republic of Korea. Ticks Tick Borne Dis. 2021;12: 101813.

    Article 
    PubMed 

    Google Scholar
     

  • Ikemori R, Aoyama I, Sasaki T, Takabayashi H, Morisada Ok, Kinoshita M, Ikuta Ok, Yumisashi T, Motomura Ok. Two completely different strains of extreme fever with thrombocytopenia syndrome virus (SFTSV) in North and South Osaka by phylogenetic evaluation of evolutionary lineage: proof for impartial SFTSV transmission. Viruses. 2021;13:177.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yun Y, Heo ST, Kim G, Hewson R, Kim H, Park D, Cho NH, Oh WS, Ryu SY, Kwon KT, et al. Phylogenetic evaluation of extreme fever with thrombocytopenia syndrome virus in South Korea and migratory fowl routes between China, South Korea, and Japan. Am J Trop Med Hyg. 2015;93:468–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee HS, Kim J, Son Ok, Kim Y, Hwang J, Jeong H, Ahn TY, Jheong WH. Phylogenetic evaluation of extreme fever with thrombocytopenia syndrome virus in Korean water deer (Hydropotes inermis argyropus) within the Republic of Korea. Ticks Tick Borne Dis. 2020;11: 101331.

    Article 
    PubMed 

    Google Scholar
     

  • Li JC, Wang YN, Zhao J, Li H, Liu W. A evaluate on the epidemiology of extreme fever with thrombocytopenia syndrome. Zhonghua Liu Xing Bing Xue Za Zhi. 2021;42:2226–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Ok, Zhou H, Solar RX, Yao HW, Li Y, Wang LP, Di M, Li XL, Yang Y, Grey GC, et al. A nationwide evaluation of the epidemiology of extreme fever with thrombocytopenia syndrome, China. Sci Rep. 2015;5:9679.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu B, Cai Ok, Liu M, Li W, Xu J, Qiu F, Zhan J. Laboratory detection and molecular phylogenetic evaluation of extreme fever with thrombocytopenia syndrome virus in Hubei Province, central China. Arch Virol. 2018;163:3243–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonald SM, Nelson MI, Turner PE, Patton JT. Reassortment in segmented RNA viruses: mechanisms and outcomes. Nat Rev Microbiol. 2016;14:448–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simonsen L, Viboud C, Grenfell BT, Dushoff J, Jennings L, Smit M, Macken C, Hata M, Gog J, Miller MA, Holmes EC. The genesis and unfold of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Mol Biol Evol. 2007;24:1811–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson MI, Viboud C, Simonsen L, Bennett RT, Griesemer SB, St George Ok, Taylor J, Spiro DJ, Sengamalay NA, Ghedin E, et al. A number of reassortment occasions within the evolutionary historical past of H1N1 influenza A virus since 1918. PLoS Pathog. 2008;4: e1000012.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam TT, Liu W, Bowden TA, Cui N, Zhuang L, Liu Ok, Zhang YY, Cao WC, Pybus OG. Evolutionary and molecular evaluation of the emergent extreme fever with thrombocytopenia syndrome virus. Epidemics. 2013;5:1–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zu Z, Lin H, Hu Y, Zheng X, Chen C, Zhao Y, He N. The genetic evolution and codon utilization sample of extreme fever with thrombocytopenia syndrome virus. Infect Genet Evol. 2022;99: 105238.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mindich L. Packaging, replication and recombination of the segmented genome of bacteriophage Phi6 and its family members. Virus Res. 2004;101:83–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai MM. Genetic recombination in RNA viruses. Curr High Microbiol Immunol. 1992;176:21–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen LJS, Zhe P, Chang L, Shaojian X, Hong H, Xiaoyan W, Jun L. Recombination and the mechanism of RNA viruses. China Anim Well being Insp. 2021;8:P82–92.


    Google Scholar
     

  • Boni MF, Smith GJ, Holmes EC, Vijaykrishna D. No proof for intra-segment recombination of 2009 H1N1 influenza virus in swine. Gene. 2012;494:242–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boni MF, Zhou Y, Taubenberger JK, Holmes EC. Homologous recombination could be very uncommon or absent in human influenza A virus. J Virol. 2008;82:4807–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plyusnin A, Kukkonen SK, Plyusnina A, Vapalahti O, Vaheri A. Transfection-mediated era of functionally competent Tula hantavirus with recombinant S RNA phase. EMBO J. 2002;21:1497–503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He CQ, Ding NZ. Discovery of extreme fever with thrombocytopenia syndrome bunyavirus strains originating from intragenic recombination. J Virol. 2012;86:12426–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokomizo Ok, Tomozane M, Sano C, Ohta R. Medical presentation and mortality of extreme fever with thrombocytopenia syndrome in Japan: a scientific evaluate of case studies. Int J Environ Res Public Well being. 2022;19:2271.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiluo L. Epidemiological, medical and viral evolutionary traits of necessary rising infectious illnesses (SFTS and COVID-19). Naval Medical College, 2020.

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here