Epstein-Barr virus an infection: the micro and macro worlds | Virology Journal

0
6


  • Epstein MA, Achong BG, Barr YM. VIRUS PARTICLES IN CULTURED LYMPHOBLASTS FROM BURKITT’S LYMPHOMA. Lancet. 1964;1(7335):702–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen JI, Jaffe ES, Dale JK, Pittaluga S, Heslop HE, Rooney CM, et al. Characterization and therapy of power energetic Epstein-Barr virus illness: a 28-year expertise in the US. Blood. 2011;117(22):5835–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and scientific illness. Cell. 2022;185(20):3652–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson MP, Kurzrock R. Epstein-Barr Virus and Most cancers. Clin Most cancers Res. 2004;10(3):803–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pattern J, Younger L, Martin B, Chatman T, Kieff E, Rickinson A, et al. Epstein-Barr virus sorts 1 and a couple of differ of their EBNA-3A, EBNA-3B, and EBNA-3 C genes. J Virol. 1990;64(9):4084–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucchesi W, Brady G, Dittrich-Breiholz O, Kracht M, Russ R, Farrell PJ. Differential gene regulation by Epstein-Barr virus sort 1 and sort 2 EBNA2. J Virol. 2008;82(15):7456–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman CB, Wohlford EM, Smith NA, King CA, Ritchie JA, Baresel PC, et al. Epstein-Barr virus sort 2 latently infects T cells, inducing an atypical activation characterised by expression of lymphotactic cytokines. J Virol. 2015;89(4):2301–12.

    Article 
    PubMed 

    Google Scholar
     

  • Zimber U, Adldinger HK, Lenoir GM, Vuillaume M, Knebel-Doeberitz MV, Laux G, et al. Geographical prevalence of two kinds of Epstein-Barr virus. Virology. 1986;154(1):56–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen JI. Epstein-Barr virus an infection. N Engl J Med. 2000;343(7):481–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong G, Zhang B, Huang MY, Zhou H, Chen LZ, Feng QS, et al. Epstein-Barr virus (EBV) an infection in chinese language kids: a retrospective examine of age-specific prevalence. PLoS ONE. 2014;9(6):e99857.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vedham V, Verma M, Mahabir S. Early-life exposures to infectious brokers and later most cancers improvement. Most cancers Med. 2015;4(12):1908–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dugan JP, Coleman CB, Haverkos B. Alternatives to focus on the life cycle of Epstein-Barr Virus (EBV) in EBV-Related Lymphoproliferative Issues. Entrance Oncol. 2019;9:127.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutt-Fletcher LM. Epstein-Barr virus entry. J Virol. 2007;81(15):7825–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machón C, Fàbrega-Ferrer M, Zhou D, Cuervo A, Carrascosa JL, Stuart DI, et al. Atomic construction of the Epstein-Barr virus portal. Nat Commun. 2019;10(1):3891.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarbouriech N, Buisson M, Géoui T, Daenke S, Cusack S, Burmeister WP. Structural genomics of the Epstein–Barr virus. Acta Crystallogr Sect D: Biol Crystallogr. 2006;62(10):1276–85.

    Article 

    Google Scholar
     

  • Ogembo Javier G, Kannan L, Ghiran I, Nicholson-Weller A, Finberg RW, Tsokos George C, et al. Human complement receptor sort 1/CD35 is an Epstein-Barr virus receptor. Cell Rep. 2013;3(2):371–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connolly SA, Jardetzky TS, Longnecker R. The structural foundation of herpesvirus entry. Nat Rev Microbiol. 2021;19(2):110–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chesnokova LS, Ahuja MK, Hutt-Fletcher LM. Epstein-Barr virus glycoprotein gB and gHgL can mediate fusion and entry in trans, and warmth can act as a partial surrogate for gHgL and set off a conformational change in gB. J Virol. 2014;88(21):12193–201.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spear PG, Longnecker R. Herpesvirus entry: an replace. J Virol. 2003;77(19):10179–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller N, Hutt-Fletcher LM. Epstein-Barr virus enters B cells and epithelial cells by completely different routes. J Virol. 1992;66(6):3409–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H-B, Zhang H, Zhang J-P, Li Y, Zhao B, Feng G-Ok, et al. Neuropilin 1 is an entry issue that promotes EBV an infection of nasopharyngeal epithelial cells. Nat Commun. 2015;6(1):6240.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Longnecker R, Kieff E, Cohen J. Fields virology. Epstein-Barr virus (chap. 61). 2013;2:1898–59.

  • Gewurz BE, Towfic F, Mar JC, Shinners NP, Takasaki Ok, Zhao B et al. Genome-wide siRNA display for mediators of NF-κB activation. Proceedings of the Nationwide Academy of Sciences. 2012;109(7):2467-72.

  • Tsurumi T, Fujita M, Kudoh A. Latent and lytic Epstein-Barr virus replication methods. Rev Med Virol. 2005;15(1):3–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Odumade OA, Hogquist KA, Balfour HH Jr. Progress and issues in understanding and managing main Epstein-Barr virus infections. Clin Microbiol Rev. 2011;24(1):193–209.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor GS, Lengthy HM, Brooks JM, Rickinson AB, Hislop AD. The immunology of Epstein-Barr virus-induced illness. Annu Rev Immunol. 2015;33:787–821.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thorley-Lawson DA, Hawkins JB, Tracy SI, Shapiro M. The pathogenesis of Epstein–Barr virus persistent an infection. Curr Opin Virol. 2013;3(3):227–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babcock GJ, Hochberg D, Thorley-Lawson AD. The expression sample of Epstein-Barr virus latent genes in vivo depends upon the differentiation stage of the contaminated B cell. Immunity. 2000;13(4):497–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lengthy HM, Meckiff BJ, Taylor GS. The T-cell response to Epstein-Barr Virus-New Methods from an Outdated Canine. Entrance Immunol. 2019;10:2193.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ambinder RF, Lin L. Mononucleosis within the laboratory. J Infect Dis. 2005;192(9):1503–4.

    Article 
    PubMed 

    Google Scholar
     

  • Aiyar A, Aras S, Washington A, Singh G, Luftig RB. Epstein-Barr Nuclear Antigen 1 modulates replication of orip-plasmids by impeding replication and transcription fork migration via the household of repeats. Virol J. 2009;6:29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly GL, Lengthy HM, Stylianou J, Thomas WA, Leese A, Bell AI, et al. An Epstein-Barr virus anti-apoptotic protein constitutively expressed in reworked cells and implicated in burkitt lymphomagenesis: the Wp/BHRF1 hyperlink. PLoS Pathog. 2009;5(3):e1000341.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Leo A, Calderon A, Lieberman PM. Management of viral latency by Episome upkeep proteins. Tendencies Microbiol. 2020;28(2):150–62.

    Article 
    PubMed 

    Google Scholar
     

  • Roughan JE, Thorley-Lawson DA. The intersection of Epstein-Barr virus with the germinal middle. J Virol. 2009;83(8):3968–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kintner C, Sugden B. Conservation and progressive methylation of Epstein-Barr viral DNA sequences in reworked cells. J Virol. 1981;38(1):305–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murata T, Tsurumi T. Switching of EBV cycles between latent and lytic states. Rev Med Virol. 2014;24(3):142–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rooney CM, Rowe DT, Ragot T, Farrell PJ. The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol. 1989;63(7):3109–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zalani S, Holley-Guthrie E, Kenney S. Epstein-Barr viral latency is disrupted by the immediate-early BRLF1 protein via a cell-specific mechanism. Proc Natl Acad Sci. 1996;93(17):9194–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammerschmidt W, Sugden B. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell. 1988;55(3):427–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenney SC, Mertz JE. Regulation of the latent-lytic swap in Epstein–Barr virus. Sem Most cancers Biol. 2014;26:60–8.

    Article 
    CAS 

    Google Scholar
     

  • Gewurz BE, Longnecker RM, Cohen JI. Epstein-Barr Virus. Fields Virol. 2021;2:324–89.


    Google Scholar
     

  • Ma Z, Damania B. The cGAS-STING protection pathway and its counteraction by viruses. Cell Host Microbe. 2016;19(2):150–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawai T, Akira S. The function of pattern-recognition receptors in innate immunity: replace on toll-like receptors. Nat Immunol. 2010;11(5):373–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barton GM, Kagan JC. A cell organic view of toll-like receptor perform: regulation via compartmentalization. Nat Rev Immunol. 2009;9(8):535–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Gent M, Braem SG, de Jong A, Delagic N, Peeters JG, Boer IG, et al. Epstein-Barr virus massive tegument protein BPLF1 contributes to innate immune evasion via interference with toll-like receptor signaling. PLoS Pathog. 2014;10(2):e1003960.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan Y, Li Z, Cheng S, Chen Y, Zhang L, He J, et al. Nasopharyngeal carcinoma development is mediated by EBER-triggered irritation by way of the RIG-I pathway. Most cancers Lett. 2015;361(1):67–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiang JJ, Sparrer KM, van Gent M, Lässig C, Huang T, Osterrieder N, et al. Viral unmasking of mobile 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat Immunol. 2018;19(1):53–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, et al. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that prompts STING. Nature. 2013;498(7454):380–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang C-HA, Zundell JA, Ranatunga S, Lin C, Nefedova Y, Del Valle JR, et al. Agonist-mediated activation of STING induces apoptosis in malignant B CellsC GAMP, the place is thy STING? Most cancers Res. 2016;76(8):2137–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pisano G, Roy A, Ahmed Ansari M, Kumar B, Chikoti L, Chandran B. Interferon-γ-inducible protein 16 (IFI16) is required for the upkeep of Epstein-Barr virus latency. Virol J. 2017;14(1):221.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Münz C. Pure killer cell responses to human oncogenic γ-herpesvirus infections. Semin Immunol. 2022;60:101652.

    Article 
    PubMed 

    Google Scholar
     

  • Chung BK, Tsai Ok, Allan LL, Zheng DJ, Nie JC, Biggs CM, et al. Innate immune management of EBV-infected B cells by invariant pure killer T cells. Blood the Journal of the American Society of Hematology. 2013;122(15):2600–8.

    CAS 

    Google Scholar
     

  • Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and performance of dendritic cells and their subsets within the regular state and the infected setting. Annu Rev Immunol. 2013;31:563–604.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiola S, Gosselin D, Takada Ok, Gosselin J. TLR9 contributes to the popularity of EBV by main monocytes and plasmacytoid dendritic cells. J Immunol. 2010;185(6):3620–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quan TE, Roman RM, Rudenga BJ, Holers VM, Craft JE. Epstein-Barr virus promotes interferon-alpha manufacturing by plasmacytoid dendritic cells. Arthritis Rheum. 2010;62(6):1693–701.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, et al. Epstein-Barr virus (EBV)-encoded small RNA is launched from EBV-infected cells and prompts signaling from toll-like receptor 3. J Exp Med. 2009;206(10):2091–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nemerow GR, Houghten RA, Moore MD, Cooper NR. Identification of an epitope within the main envelope protein of Epstein-Barr virus that mediates viral binding to the B lymphocyte EBV receptor (CR2). Cell. 1989;56(3):369–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bu W, Joyce MG, Nguyen H, Banh DV, Aguilar F, Tariq Z, et al. Immunization with parts of the viral Fusion Equipment elicits antibodies that neutralize Epstein-Barr Virus in B cells and epithelial cells. Immunity. 2019;50(5):1305–16e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coghill AE, McGuire A, Sinha S, Homad L, Sinha I, Sholukh A, et al. Epstein-Barr Virus glycoprotein antibody titers and danger of nasopharyngeal carcinoma. Open Discussion board Infect Dis. 2022;9(12):ofac635.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heslop HE, Rooney CM. Adoptive mobile immunotherapy for EBV lymphoproliferative illness. Immunol Rev. 1997;157:217–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hislop AD, Taylor GS. T-Cell responses to EBV. Curr Prime Microbiol Immunol. 2015;391:325–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Pudney VA, Leese AM, Rickinson AB, Hislop AD. CD8 + immunodominance amongst Epstein-Barr virus lytic cycle antigens straight displays the effectivity of antigen presentation in lytically contaminated cells. J Exp Med. 2005;201(3):349–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iskra S, Kalla M, Delecluse HJ, Hammerschmidt W, Moosmann A. Toll-like receptor agonists synergistically improve proliferation and activation of B cells by epstein-barr virus. J Virol. 2010;84(7):3612–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nalesnik MA. Scientific and pathological options of post-transplant lymphoproliferative problems (PTLD). Springer Semin Immunopathol. 1998;20(3–4):325–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lengthy HM, Haigh TA, Gudgeon NH, Leen AM, Tsang CW, Brooks J, et al. CD4 + T-cell responses to Epstein-Barr virus (EBV) latent-cycle antigens and the popularity of EBV-transformed lymphoblastoid cell traces. J Virol. 2005;79(8):4896–907.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haigh TA, Lin X, Jia H, Hui EP, Chan AT, Rickinson AB, et al. EBV latent membrane proteins (LMPs) 1 and a couple of as immunotherapeutic targets: LMP-specific CD4 + cytotoxic T cell recognition of EBV-transformed B cell traces. J Immunol. 2008;180(3):1643–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaglia MM. Anti-viral and pro-inflammatory features of toll-like receptors throughout gamma-herpesvirus infections. Virol J. 2021;18(1):218.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fathallah I, Parroche P, Gruffat H, Zannetti C, Johansson H, Yue J, et al. EBV latent membrane protein 1 is a unfavorable regulator of TLR9. J Immunol. 2010;185(11):6439–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Gent M, Griffin BD, Berkhoff EG, van Leeuwen D, Boer IG, Buisson M, et al. EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation throughout productive an infection. J Immunol. 2011;186(3):1694–702.

    Article 
    PubMed 

    Google Scholar
     

  • Vilmen G, Glon D, Siracusano G, Lussignol M, Shao Z, Hernandez E, et al. BHRF1, a BCL2 viral homolog, disturbs mitochondrial dynamics and stimulates mitophagy to dampen sort I IFN induction. Autophagy. 2021;17(6):1296–315.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu Y, Qin Z, Wang J, Zheng X, Lu J, Zhang X, et al. Epstein-Barr Virus miR-BART6-3p inhibits the RIG-I pathway. J Innate Immun. 2017;9(6):574–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lui WY, Bharti A, Wong NM, Jangra S, Botelho MG, Yuen KS, et al. Suppression of cGAS- and RIG-I-mediated innate immune signaling by Epstein-Barr virus deubiquitinase BPLF1. PLoS Pathog. 2023;19(2):e1011186.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing J, Zhang A, Zhang H, Wang J, Li XC, Zeng MS, et al. TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nat Commun. 2017;8(1):945.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lange PT, White MC, Damania B. Activation and evasion of Innate Immunity by Gammaherpesviruses. J Mol Biol. 2022;434(6):167214.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hahn AM, Huye LE, Ning S, Webster-Cyriaque J, Pagano JS. Interferon regulatory issue 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1. J Virol. 2005;79(15):10040–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaud F, Coulombe F, Gaudreault E, Paquet-Bouchard C, Rola-Pleszczynski M, Gosselin J. Epstein-Barr virus interferes with the amplification of IFNalpha secretion by activating suppressor of cytokine signaling 3 in main human monocytes. PLoS ONE. 2010;5(7):e11908.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bentz GL, Liu R, Hahn AM, Shackelford J, Pagano JS. Epstein-Barr virus BRLF1 inhibits transcription of IRF3 and IRF7 and suppresses induction of interferon-beta. Virology. 2010;402(1):121–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geiger TR, Martin JM. The Epstein-Barr virus-encoded LMP-1 oncoprotein negatively impacts Tyk2 phosphorylation and interferon signaling in human B cells. J Virol. 2006;80(23):11638–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah KM, Stewart SE, Wei W, Woodman CB, O’Neil JD, Dawson CW, et al. The EBV-encoded latent membrane proteins, LMP2A and LMP2B, restrict the actions of interferon by focusing on interferon receptors for degradation. Oncogene. 2009;28(44):3903–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu L, Fossum E, Joo CH, Inn KS, Shin YC, Johannsen E, et al. Epstein-Barr virus LF2: an antagonist to sort I interferon. J Virol. 2009;83(2):1140–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang JT, Doong SL, Teng SC, Lee CP, Tsai CH, Chen MR. Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory issue 3 signaling pathway. J Virol. 2009;83(4):1856–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang LS, Wang JT, Doong SL, Lee CP, Chang CW, Tsai CH, et al. Epstein-Barr virus BGLF4 kinase downregulates NF-κB transactivation via phosphorylation of coactivator UXT. J Virol. 2012;86(22):12176–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Ok, Lv DW, Li R. Conserved herpesvirus protein kinases Goal SAMHD1 to facilitate Virus Replication. Cell Rep. 2019;28(2):449–59e5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong HL, Wang X, Chang RC, Jin DY, Feng H, Wang Q, et al. Steady expression of EBERs in immortalized nasopharyngeal epithelial cells confers resistance to apoptotic stress. Mol Carcinog. 2005;44(2):92–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klinke O, Feederle R, Delecluse HJ. Genetics of Epstein-Barr virus microRNAs. Semin Most cancers Biol. 2014;26:52–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu J, Thorley-Lawson DA. EBV microRNA BART 18-5p targets MAP3K2 to facilitate persistence in vivo by inhibiting viral replication in B cells. Proc Natl Acad Sci U S A. 2014;111(30):11157–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shinozaki-Ushiku A, Kunita A, Isogai M, Hibiya T, Ushiku T, Takada Ok, et al. Profiling of Virus-Encoded MicroRNAs in Epstein-Barr Virus-Related gastric carcinoma and their roles in gastric carcinogenesis. J Virol. 2015;89(10):5581–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Westhoff Smith D, Chakravorty A, Hayes M, Hammerschmidt W, Sugden B. The Epstein-Barr Virus Oncogene EBNA1 suppresses pure killer cell responses and apoptosis early after an infection of Peripheral B cells. mBio. 2021;12(6):e0224321.

    Article 
    PubMed 

    Google Scholar
     

  • Severa M, Giacomini E, Gafa V, Anastasiadou E, Rizzo F, Corazzari M, et al. EBV stimulates TLR- and autophagy-dependent pathways and impairs maturation in plasmacytoid dendritic cells: implications for viral immune escape. Eur J Immunol. 2013;43(1):147–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rowe M, Glaunsinger B, van Leeuwen D, Zuo J, Sweetman D, Ganem D, et al. Host shutoff throughout productive Epstein-Barr virus an infection is mediated by BGLF5 and should contribute to immune evasion. Proc Natl Acad Sci U S A. 2007;104(9):3366–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horst D, Favaloro V, Vilardi F, van Leeuwen HC, Garstka MA, Hislop AD, et al. EBV protein BNLF2a exploits host tail-anchored protein integration equipment to inhibit TAP. J Immunol. 2011;186(6):3594–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuo J, Currin A, Griffin BD, Shannon-Lowe C, Thomas WA, Ressing ME, et al. The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by focusing on MHC class I molecules for degradation. PLoS Pathog. 2009;5(1):e1000255.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li D, Qian L, Chen C, Shi M, Yu M, Hu M, et al. Down-regulation of MHC class II expression via inhibition of CIITA transcription by lytic transactivator zta throughout Epstein-Barr virus reactivation. J Immunol. 2009;182(4):1799–809.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ressing ME, van Leeuwen D, Verreck FA, Gomez R, Heemskerk B, Toebes M, et al. Interference with T cell receptor-HLA-DR interactions by Epstein-Barr virus gp42 ends in diminished T helper cell recognition. Proc Natl Acad Sci U S A. 2003;100(20):11583–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales O, Mrizak D, François V, Mustapha R, Miroux C, Depil S, et al. Epstein-Barr virus an infection induces a rise of T regulatory sort 1 cells in Hodgkin lymphoma sufferers. Br J Haematol. 2014;166(6):875–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Z, Usherwood EJ. Immune escape of γ-herpesviruses from adaptive immunity. Rev Med Virol. 2014;24(6):365–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrei G, Trompet E, Snoeck R. Novel therapeutics for Epstein-Barr Virus. Molecules. 2019;24(5).

  • Hoshino Y, Morishima T, Kimura H, Nishikawa Ok, Tsurumi T, Kuzushima Ok. Antigen-driven enlargement and contraction of CD8+-activated T cells in main EBV an infection. J Immunol. 1999;163(10):5735–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rickinson AB, Lengthy HM, Palendira U, Münz C, Hislop AD. Mobile immune controls over Epstein–Barr virus an infection: new classes from the clinic and the laboratory. Tendencies Immunol. 2014;35(4):159–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pagano JS, Whitehurst CB, Andrei G. Antiviral medication for EBV. Cancers. 2018;10(6):197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura H, Cohen JI. Continual energetic Epstein-Barr Virus Illness. Entrance Immunol. 2017;8:1867.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura H, Ito Y, Kawabe S, Gotoh Ok, Takahashi Y, Kojima S, et al. EBV-associated T/NK-cell lymphoproliferative illnesses in nonimmunocompromised hosts: potential evaluation of 108 circumstances. Blood. 2012;119(3):673–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwata S, Wada Ok, Tobita S, Gotoh Ok, Ito Y, Demachi-Okamura A, et al. Quantitative evaluation of Epstein-Barr virus (EBV)-related gene expression in sufferers with power energetic EBV an infection. J Gen Virol. 2010;91(Pt 1):42–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimura H, Morishima T, Kanegane H, Ohga S, Hoshino Y, Maeda A, et al. Prognostic elements for power energetic Epstein-Barr Virus an infection. J Infect Dis. 2003;187(4):527–33.

    Article 
    PubMed 

    Google Scholar
     

  • Bollard CM, Cohen JI. How I deal with T-cell power energetic Epstein-Barr virus illness. Blood. 2018;131(26):2899–905.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Draborg AH, Duus Ok, Houen G. Epstein-Barr virus in systemic autoimmune illnesses. Clin Dev Immunol. 2013;2013:535738.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adler B, Schaadt E, Kempkes B, Zimber-Strobl U, Baier B, Bornkamm GW. Management of Epstein-Barr virus reactivation by activated CD40 and viral latent membrane protein 1. Proc Natl Acad Sci U S A. 2002;99(1):437–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A. Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell loss of life. Proc Natl Acad Sci U S A. 1993;90(18):8479–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wucherpfennig KW. Mechanisms for the induction of autoimmunity by infectious brokers. J Clin Make investments. 2001;108(8):1097–104.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakkas LI, Daoussis D, Liossis SN, Bogdanos DP. The infectious foundation of ACPA-Constructive rheumatoid arthritis. Entrance Microbiol. 2017;8:1853.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein-Barr virus persistence and an infection of autoreactive plasma cells in synovial lymphoid constructions in rheumatoid arthritis. Ann Rheum Dis. 2013;72(9):1559–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johansson L, Pratesi F, Brink M, Ärlestig L, D’Amato C, Bartaloni D, et al. Antibodies directed in opposition to endogenous and exogenous citrullinated antigens pre-date the onset of rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):127.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalisz Ok, Alessandrino F, Beck R, Smith D, Kikano E, Ramaiya NH, et al. An replace on Burkitt lymphoma: a evaluation of pathogenesis and multimodality imaging evaluation of illness presentation, therapy response, and recurrence. Insights Imaging. 2019;10(1):56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstein JA, Bernstein RL. Burkitt’s lymphoma and the function of Epstein-Barr virus. J Trop Pediatr. 1990;36(3):114–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S, Muramatsu M, et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell. 2004;118(4):431–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torgbor C, Awuah P, Deitsch Ok, Kalantari P, Duca KA, Thorley-Lawson DA. A multifactorial function for P. falciparum malaria in endemic Burkitt’s lymphoma pathogenesis. PLoS Pathog. 2014;10(5):e1004170.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paschos Ok, Smith P, Anderton E, Middeldorp JM, White RE, Allday MJ. Epstein-barr virus latency in B cells results in epigenetic repression and CpG methylation of the tumour suppressor gene bim. PLoS Pathog. 2009;5(6):e1000492.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitz R, Younger RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and practical genomics. Nature. 2012;490(7418):116–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J. Epstein-Barr viral DNA in tissues of Hodgkin’s illness. Am J Pathol. 1987;129(1):86–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu TC, Mann RB, Charache P, Hayward SD, Staal S, Lambe BC, et al. Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin’s illness. Int J Most cancers. 1990;46(5):801–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Well being Group classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vockerodt M, Morgan SL, Kuo M, Wei W, Chukwuma MB, Arrand JR, et al. The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells in the direction of a Hodgkin’s Reed-Sternberg-like phenotype. J Pathol. 2008;216(1):83–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. Leukemia. 2021;35(4):968–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bräuninger A, Schmitz R, Bechtel D, Renné C, Hansmann ML, Küppers R. Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int J Most cancers. 2006;118(8):1853–61.

    Article 
    PubMed 

    Google Scholar
     

  • Mancao C, Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and important for B-cell survival. Blood the Journal of the American Society of Hematology. 2007;110(10):3715–21.

    CAS 

    Google Scholar
     

  • Shanmugaratnam Ok. Histological typing of nasopharyngeal carcinoma. IARC Sci Publ (1971). 1978(20):3–12.

  • Nicholls JM. Nasopharyngeal carcinoma: classification and histologic appearances. Adv Anat Pathol. 1997;4(2):71–84.

    Article 

    Google Scholar
     

  • Li W, Duan X, Chen X, Zhan M, Peng H, Meng Y, et al. Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma. Entrance Immunol. 2022;13:1079515.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakanishi Y, Wakisaka N, Kondo S, Endo Ok, Sugimoto H, Hatano M, et al. Development of understanding for the function of Epstein-Barr virus and administration of nasopharyngeal carcinoma. Most cancers Metastasis Rev. 2017;36(3):435–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kieff E. Epstein-Barr virus and its replication. Discipline’s Virol. 1996:2348–96.

  • Lu JJ, Chen JY, Hsu TY, Yu WC, Su IJ, Yang CS. Induction of apoptosis in epithelial cells by Epstein-Barr virus latent membrane protein 1. J Gen Virol. 1996;77(Pt 8):1883–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshizaki T, Sato H, Furukawa M, Pagano JS. The expression of matrix metalloproteinase 9 is enhanced by Epstein-Barr virus latent membrane protein 1. Proc Natl Acad Sci U S A. 1998;95(7):3621–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo S, Yoshizaki T, Wakisaka N, Horikawa T, Murono S, Jang KL, et al. MUC1 induced by Epstein-Barr virus latent membrane protein 1 causes dissociation of the cell-matrix interplay and mobile invasiveness by way of STAT signaling. J Virol. 2007;81(4):1554–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Endo Ok, Kondo S, Shackleford J, Horikawa T, Kitagawa N, Yoshizaki T, et al. Phosphorylated ezrin is related to EBV latent membrane protein 1 in nasopharyngeal carcinoma and induces cell migration. Oncogene. 2009;28(14):1725–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo S, Wakisaka N, Schell MJ, Horikawa T, Sheen TS, Sato H, et al. Epstein-Barr virus latent membrane protein 1 induces the matrix metalloproteinase-1 promoter by way of an ets binding web site fashioned by a single nucleotide polymorphism: enhanced susceptibility to nasopharyngeal carcinoma. Int J Most cancers. 2005;115(3):368–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wakisaka N, Hirota Ok, Kondo S, Sawada-Kitamura S, Endo Ok, Murono S, et al. Induction of lymphangiogenesis via vascular endothelial development factor-C/vascular endothelial development issue receptor 3 axis and its correlation with lymph node metastasis in nasopharyngeal carcinoma. Oral Oncol. 2012;48(8):703–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marquitz AR, Mathur A, Chugh PE, Dittmer DP, Raab-Traub N. Expression profile of microRNAs in Epstein-Barr virus-infected AGS gastric carcinoma cells. J Virol. 2014;88(2):1389–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murer A, Rühl J, Zbinden A, Capaul R, Hammerschmidt W, Chijioke O, et al. MicroRNAs of Epstein-Barr virus attenuate T-cell-mediated immune management in vivo. MBio. 2019;10(1):e01941–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura Y, Suzuki D, Tokunaga T, Takabayashi T, Yamada T, Wakisaka N, et al. Epidemiological evaluation of nasopharyngeal carcinoma within the central area of Japan throughout the interval from 1996 to 2005. Auris Nasus Larynx. 2011;38(2):244–9.

    Article 
    PubMed 

    Google Scholar
     

  • Complete molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.

    Article 

    Google Scholar
     

  • Hernando H, Islam AB, Rodríguez-Ubreva J, Forné I, Ciudad L, Imhof A, et al. Epstein-Barr virus-mediated transformation of B cells induces international chromatin adjustments unbiased to the acquisition of proliferation. Nucleic Acids Res. 2014;42(1):249–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abe H, Kaneda A, Fukayama M. Epstein-Barr Virus-Related gastric carcinoma: use of host cell machineries and somatic gene mutations. Pathobiology. 2015;82(5):212–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hino R, Uozaki H, Murakami N, Ushiku T, Shinozaki A, Ishikawa S, et al. Activation of DNA methyltransferase 1 by EBV Latent membrane protein 2A results in promoter hypermethylation of PTEN Gene in gastric carcinoma. Most cancers Res. 2009;69(7):2766–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito R, Abe H, Kunita A, Yamashita H, Seto Y, Fukayama M. Overexpression and gene amplification of PD-L1 in most cancers cells and PD-L1(+) immune cells in Epstein-Barr virus-associated gastric most cancers: the prognostic implications. Mod Pathol. 2017;30(3):427–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ignatova E, Seriak D, Fedyanin M, Tryakin A, Pokataev I, Menshikova S, et al. Epstein–Barr virus-associated gastric most cancers: illness that requires particular strategy. Gastric Most cancers. 2020;23(6):951–60.

    Article 
    PubMed 

    Google Scholar
     

  • Li Z, Lai Y, Solar L, Zhang X, Liu R, Feng G, et al. PD-L1 expression is related to huge lymphocyte infiltration and histology in gastric most cancers. Hum Pathol. 2016;55:182–9.

    Article 
    PubMed 

    Google Scholar
     

  • Gu S-Y, Huang T-M, Ruan L, Miao Y-H, Lu H, Chu C-M, et al. First EBV vaccine trial in people utilizing recombinant vaccinia virus expressing the most important membrane antigen. Dev Biol Stand. 1995;84:171–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Escalante GM, Foley J, Mutsvunguma LZ, Rodriguez E, Mulama DH, Muniraju M, et al. A Pentavalent Epstein-Barr Virus-Like particle vaccine elicits excessive titers of neutralizing antibodies in opposition to Epstein-Barr Virus an infection in immunized rabbits. Vaccines. 2020;8(2):169.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jean-Pierre V, Lupo J, Buisson M, Morand P, Germi R. Most important targets of curiosity for the event of a prophylactic or therapeutic Epstein-Barr Virus Vaccine. Entrance Microbiol. 2021;12.

  • Lin C-L, Lo W-F, Lee T-H, Ren Y, Hwang S-L, Cheng Y-F, et al. Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic cells induces practical CD8 + T-cell immunity and should result in tumor regression in sufferers with EBV-positive nasopharyngeal carcinoma. Most cancers Res. 2002;62(23):6952–8.

    CAS 
    PubMed 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here