Discovery and structural characterization of monkeypox virus methyltransferase VP39 inhibitors reveal similarities to SARS-CoV-2 nsp14 methyltransferase

0
33


  • Rizk, J. G., Lippi, G., Henry, B. M., Forthal, D. N. & Rizk, Y. Prevention and therapy of monkeypox. Medicine 82, 957–963 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beer, E. M. & Rao, V. B. A scientific evaluate of the epidemiology of human monkeypox outbreaks and implications for outbreak technique. PLoS Negl. Trop. Dis. 13, e0007791 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • https://www.cdc.gov/poxvirus/monkeypox/index.html (2022).

  • Grimm, C., Bartuli, J. & Fischer, U. Cytoplasmic gene expression: classes from poxviruses. Developments Biochem. Sci. 47, 892–902 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paterson, B. M. & Rosenberg, M. Environment friendly translation of prokaryotic mRNAs in a eukaryotic cell-free system requires addition of a cap construction. Nature 279, 692–696 (1979).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Each, G. W., Furuichi, Y., Muthukrishnan, S. & Shatkin, A. J. Ribosome binding to reovirus mRNA in protein synthesis requires 5’ terminal 7-methylguanosine. Cell 6, 185–195 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mears, H. V. & Sweeney, T. R. Higher collectively: the function of IFIT protein-protein interactions within the antiviral response. J. Gen. Virol. 99, 1463–1477 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thoresen, D. et al. The molecular mechanism of RIG-I activation and signaling. Immunol. Rev. 304, 154–168 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. W., Katsafanas, G. C., Liu, R., Wyatt, L. S. & Moss, B. Poxvirus decapping enzymes improve virulence by stopping the buildup of dsRNA and the induction of innate antiviral responses. Cell Host Microbe 17, 320–331 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Georgana, I., Sumner, R. P., Towers, G. J. & Maluquer de Motes, C. Virulent poxviruses inhibit DNA sensing by stopping STING activation. J. Virol. 92, e02145–17 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuman, S. RNA capping: progress and prospects. RNA 21, 735–737 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyde, J. L. & Diamond, M. S. Innate immune restriction and antagonism of viral RNA missing 2-O methylation. Virology 479–480, 66–74 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hodel, A. E., Gershon, P. D., Shi, X. N. & Quiocho, F. A. The 1.85 angstrom construction of vaccinia protein VP39: a bifunctional enzyme that participates within the modification of each mRNA ends. Cell 85, 247–256 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krafcikova, P., Silhan, J., Nencka, R. & Boura, E. Structural evaluation of the SARS-CoV-2 methyltransferase complicated concerned in RNA cap creation sure to sinefungin. Nat. Commun. 11, 3717 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benoni, R. et al. Substrate specificity of SARS-CoV-2 Nsp10-Nsp16 methyltransferase. Viruses 13, 1722 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodel, A. E., Gershon, P. D. & Quiocho, F. A. Structural foundation for sequence-nonspecific recognition of 5’-capped mRNA by a cap-modifying enzyme. Mol. Cell 1, 443–447 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. & Lazaridis, T. Water at biomolecular binding interfaces. Phys. Chem. Chem. Phys. 9, 573–581 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samways, M. L., Taylor, R. D., Macdonald, H. E. B. & Essex, J. W. Water molecules at protein-drug interfaces: computational prediction and evaluation strategies. Chem. Soc. Rev. 50, 9104–9120 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Otava, T. et al. The structure-based design of SARS-CoV-2 nsp14 methyltransferase ligands yields nanomolar inhibitors. ACS Infect. Dis. 7, 2214–2220 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Czarna, A. et al. Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 interplay releases exonuclease exercise. Construction 30, 1050–1054 e1052 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kmiec, D. & Kirchhoff, F. Monkeypox: a brand new menace? Int J. Mol. Sci. 23, 7866 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bunge, E. M. et al. The altering epidemiology of human monkeypox-A possible menace? A scientific evaluate. PLoS Negl. Trop. Dis. 16, e0010141 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, A. Okay. et al. Use of JYNNEOS Smallpox and Monkeypox Vaccine, Reside, Nonreplicating for Preexposure Vaccination of Individuals at Threat for Occupational Publicity to Orthopoxviruses: Suggestions of the Advisory Committee on Immunization Practices – United States, 2022. Mmwr-Morbid Mortal W. 71, 734–742 (2022).

  • Russo, A. T. et al. An outline of tecovirimat for smallpox therapy and expanded anti-orthopoxvirus purposes. Knowledgeable Rev. Anti Infect. Ther. 19, 331–344 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Decroly, E., Ferron, F., Lescar, J. & Canard, B. Typical and unconventional mechanisms for capping viral mRNA. Nat. Rev. Microbiol 10, 51–65 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brecher, M. et al. Identification and characterization of novel broad-spectrum inhibitors of the flavivirus methyltransferase. ACS Infect. Dis. 1, 340–349 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, S. P. et al. Small molecule inhibitors that selectively block dengue virus methyltransferase. J. Biol. Chem. 286, 6233–6240 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devkota, Okay. et al. Probing the SAM binding website of SARS-CoV-2 Nsp14 in vitro utilizing SAM aggressive inhibitors guides growing selective bisubstrate inhibitors. SLAS Disco. 26, 1200–1211 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Khalili Yazdi, A. et al. A high-throughput radioactivity-based assay for screening SARS-CoV-2 nsp10-nsp16 complicated. SLAS Disco. 26, 757–765 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Klima, M. et al. Crystal construction of SARS-CoV-2 nsp10-nsp16 in complicated with small molecule inhibitors, SS148 and WZ16. Protein Sci. 31, e4395 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed-Belkacem, R. et al. Potent inhibition of SARS-CoV-2 nsp14 N7-methyltransferase by sulfonamide-based bisubstrate analogues. J. Med Chem. 65, 6231–6249 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dostalik, P. et al. Structural evaluation of the OC43 coronavirus 2’-O-RNA methyltransferase. J. Virol. 95, e0046321 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Li, F. et al. SS148 and WZ16 inhibit the actions of nsp10-nsp16 complexes from all seven human pathogenic coronaviruses. Biochim. Biophys. Acta Gen. Subj. 1867, 130319 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nencka, R. et al. Coronaviral RNA-methyltransferases: operate, construction and inhibition. Nucleic Acids Res. 50, 635–650 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hercik, Okay., Brynda, J., Nencka, R. & Boura, E. Structural foundation of Zika virus methyltransferase inhibition by sinefungin. Arch. Virol. 162, 2091–2096 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mueller, U. et al. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Present standing and views. Eur. Phys. J. Plus 130. https://doi.org/10.1140/epjp/i2015-15141-2, (2015).

  • Kabsch, W. Xds. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 125–132 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Hodel, A. E., Gershon, P. D., Shi, X. N., Wang, S. M. & Quiocho, F. A. Particular protein recognition of an mRNA cap via its alkylated base. Nat. Struct. Biol. 4, 350–354 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCoy, A. J. et al. Phaser crystallographic software program. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular construction willpower utilizing X-rays, neutrons and electrons: current developments in Phenix. Acta Crystallogr D. 75, 861–877 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Afonine, P. V. et al. Actual-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D. 74, 531–544 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and growth of Coot. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 486–501 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Baranowski, M. R. et al. Synthesis of fluorophosphate nucleotide analogues and their characterization as instruments for (1)(9)F NMR research. J. Org. Chem. 80, 3982–3997 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here