CryoEM and stability evaluation of virus-like particles of potyvirus and ipomovirus infecting a typical host

0
39


  • Jones, R. A. C. & Naidu, R. A. World dimensions of plant virus ailments: present standing and future views. Annu. Rev. Virol. 6, 387–409 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valli, A., García, J. A. & López-Moya, J. J. Potyviruses (Potyviridae). in Encyclopedia of Virology 631–641 (Elsevier, 2021).

  • Inoue-Nagata, A. Okay. et al. ICTV virus taxonomy profile: Potyviridae 2022. J. Gen. Virol. 103, 001738 (2022).

  • Adams, M. J., Antoniw, J. F. & Beaudoin, F. Overview and evaluation of the polyprotein cleavage websites within the household Potyviridae. Mol. Plant Pathol. 6, 471–487 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Revers, F. & García, J. A. Molecular biology of potyviruses. in Adv. Virus Res. https://doi.org/10.1016/bs.aivir.2014.11.006 (2015).

  • Chung, B. Y. W., Miller, W. A., Atkins, J. F. & Firth, A. E. An overlapping important gene within the Potyviridae. Proc. Natl Acad. Sci. USA 105, 5897–5902 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodamilans, B. et al. RNA polymerase slippage as a mechanism for the manufacturing of frameshift gene merchandise in plant viruses of the Potyviridae household. J. Virol. 89, 6965–6967 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olspert, A., Chung, B. Y.-W., Atkins, J. F., Carr, J. P. & Firth, A. E. Transcriptional slippage within the positive-sense RNA virus household Potyviridae. EMBO Rep. 16, 995–1004 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mingot, A. et al. The P1N-PISPO trans -frame gene of candy potato feathery mottle potyvirus is produced throughout virus an infection and capabilities as an RNA silencing suppressor. J. Virol. 90, 3543–3557 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Untiveros, M. et al. A novel candy potato potyvirus open studying body (ORF) is expressed through polymerase slippage and suppresses RNA silencing. Mol. Plant Pathol. 17, 1111–1123 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasin, F., Daròs, J.-A. & Tzanetakis, I. E. Proteome growth within the Potyviridae evolutionary radiation. FEMS Microbiol. Rev. 46, 1–22 (2022).

    Article 

    Google Scholar
     

  • Solovyev, A. G. & Makarov, V. V. Helical capsids of plant viruses: structure with structural lability. J. Gen. Virol. 97, 1739–1754 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-Turiño, S. & García, J. A. Potyviral coat protein and genomic RNA: a hanging partnership main virion meeting and extra. Adv. Virus Res. 108, 165–211 (2020).

  • Atreya, P. L., Atreya, C. D. & Pirone, T. P. Amino acid substitutions within the coat protein lead to lack of insect transmissibility of a plant virus. Proc. Natl Acad. Sci. USA 88, 7887–7891 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atreya, P. L., Lopez-Moya, J. J., Chu, M., Atreya, C. D. & Pirone, T. P. Mutational evaluation of the coat protein N-terminal amino acids concerned in potyvirus transmission by aphids. J. Gen. Virol. 76, 265–270 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanc, S. et al. A particular interplay between coat protein and helper part correlates with aphid transmission of a Potyvirus. Virology 231, 141–147 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valli, A. A., Gallo, A., Rodamilans, B., López-Moya, J. J. & García, J. A. The HCPro from the Potyviridae household: an enviable multitasking Helper Part that each virus want to have. Mol. Plant Pathol. 19, 744–763 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dombrovsky, A., Reingold, V. & Antignus, Y. Ipomovirus – an atypical genus within the household Potyviridae transmitted by whiteflies. Pest Manag. Sci. 70, 1553–1567 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibbs, A. J., Ohshima, Okay., Phillips, M. J. & Gibbs, M. J. The prehistory of potyviruses: their preliminary radiation was through the daybreak of agriculture. PLoS ONE 3, e2523 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibbs, A. J., Hajizadeh, M., Ohshima, Okay. & Jones, R. A. C. The Potyviruses: an evolutionary synthesis is rising. Viruses 12, 132 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zamora, M. et al. Potyvirus virion construction reveals conserved protein fold and RNA binding web site in ssRNA viruses. Sci. Adv. 3, eaao2182 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kežar, A. et al. Structural foundation for the multitasking nature of the potato virus Y coat protein. Sci. Adv. 5, eaaw3808 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuesta, R. et al. Construction of Turnip mosaic virus and its viral-like particles. Sci. Rep. 9, 15396 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, L., Kendall, A., Berger, P. H., Shiel, P. J. & Stubbs, G. Wheat streak mosaic virus—Structural parameters for a Potyvirus. Virology 340, 64–69 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonald, M. et al. Structure of the potyviruses. Virology 405, 309–313 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karyeija, R. F., Kreuze, J. F., Gibson, R. W. & Valkonen, J. P. T. Synergistic interactions of a potyvirus and a phloem-limited crinivirus in candy potato vegetation. Virology 269, 26–36 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valverde, R., Clark, C. & Valkonen, J. Viruses and virus illness complexes of sweetpotato. Plant Viruses 1, 116–126 (2007).


    Google Scholar
     

  • Hollings, M., Stone, O. M. & Bock, Okay. R. Purification and properties of candy potato delicate mottle, a white-fly borne virus from candy potato(Ipomoea batatas) in East Africa. Ann. Appl. Biol. 82, 511–528 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mukasa, S. B., Rubaihayo, P. R. & Valkonen, J. P. T. Interactions between a crinivirus, an ipomovirus and a potyvirus in coinfected sweetpotato vegetation. Plant Pathol. 55, 458–467 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Untiveros, M., Fuentes, S. & Salazar, L. F. Synergistic interplay of candy potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting candy potato. Plant Dis. 91, 669–676 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Janssen, D. et al. Absence of a coding area for the helper component-proteinase within the genome of cucumber vein yellowing virus, a whitefly-transmitted member of the Potyviridae. Arch. Virol. 150, 1439–1447 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valli, A., López-Moya, J. J. & García, J. A. Recombination and gene duplication within the evolutionary diversification of P1 proteins within the household Potyviridae. J. Gen. Virol. 88, 1016–1028 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasschau, Okay. D. & Carrington, J. C. A counterdefensive technique of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461–470 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anandalakshmi, R. et al. A viral suppressor of gene silencing in vegetation. Proc. Natl Acad. Sci. USA 95, 13079–13084 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valli, A., Martín-Hernández, A. M., López-Moya, J. J. & García, J. A. RNA silencing suppression by a second copy of the P1 serine protease of Cucumber vein yellowing ipomovirus, a member of the household Potyviridae that lacks the cysteine protease HCPro. J. Virol. 80, 10055–10063 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giner, A., Lakatos, L., García-Chapa, M., López-Moya, J. J. & Burgyán, J. Viral protein inhibits RISC exercise by argonaute binding by way of conserved WG/GW motifs. PLoS Pathog. 6, e1000996 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thuenemann, E. C. et al. A Replicating viral vector vastly enhances accumulation of helical virus-like particles in vegetation. Viruses 13, 885 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moyer, J. W. Purification and Properties of Candy Potato Feathery Mottle Virus. Phytopathology 68, 998 (1978).

    Article 

    Google Scholar
     

  • Cohen, J. An improved technique for purification of Candy potato feathery mottle virus straight from candy potato. Phytopathology 78, 809 (1988).

    Article 

    Google Scholar
     

  • Nakashima, J. T., Salazar, L. F. & Wooden, Okay. R. Candy potato feathery mottle potyvirus (C1 isolate) virion and RNA purification. J. Virol. Strategies 44, 109–116 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saunders, Okay. et al. Using a replicating virus vector for in planta era of Tobacco mosaic virus nanorods appropriate for metallization. Entrance. Bioeng. Biotechnol. 10, 877361 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goto, Okay., Kanazawa, A., Kusaba, M. & Masuta, C. A easy and fast technique to detect plant siRNAs utilizing nonradioactive probes. Plant Mol. Biol. Report. 21, 51–58 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Velazquez-Campoy, A., Sancho, J., Abian, O. & Vega, S. Biophysical screening for figuring out pharmacological chaperones and inhibitors in opposition to conformational and infectious ailments. Curr. Drug Targets 17, 1492–1505 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Okay., Oerlemans, R. & Groves, M. R. Idea and purposes of differential scanning fluorimetry in early-stage drug discovery. Biophys. Rev. 12, 85–104 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grinzato, A. et al. Atomic construction of potato virus X, the prototype of the Alphaflexiviridae household. Nat. Chem. Biol. 16, 564–569 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agirrezabala, X. et al. The near-atomic cryoEM construction of a versatile filamentous plant virus reveals homology of its coat protein with nucleoproteins of animal viruses. eLife 4, e11795 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chase, O., Ferriol, I. & López-Moya, J. J. Management of plant pathogenic viruses by way of interference with insect transmission. in Plant Virus-Host Interplay 359–381 (Elsevier, 2021).

  • Gallo, A., Valli, A., Calvo, M. & García, J. A. A purposeful hyperlink between RNA replication and virion meeting within the potyvirus Plum pox virus. J. Virol. 92, e02179–17 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, J. G., Beveridge, T. J. & Bancroft, J. B. Self-assembly of protein from a flexuous virus. Virology 69, 327–331 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jagadish, M. N. et al. Expression of potyvirus coat protein in Escherichia coli and yeast and its meeting into virus-like particles. J. Gen. Virol. 72, 1543–1550 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tyulkina, L. G. et al. New viral vector for superproduction of epitopes of vaccine proteins in vegetation. Acta Nat. 3, 73–82 (2011).

    Article 
    CAS 

    Google Scholar
     

  • González-Gamboa, I., Manrique, P., Sánchez, F. & Ponz, F. Plant-made potyvirus-like particles used for log-increasing antibody sensing capability. J. Biotechnol. 254, 17–24 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Donchenko, E. Okay. et al. Construction and properties of virions and virus-like particles derived from the coat protein of Alternanthera mosaic virus. PLoS ONE 12, e0183824 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakravarty, A., Reddy, V. S. & Rao, A. L. N. Unravelling the soundness and capsid dynamics of the three virions of Brome mosaic virus assembled autonomously in vivo. J. Virol. 94, e01794–19 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laín, S., Riechmann, J., Méndez, E. & García, J. A. Nucleotide sequence of the three’ terminal area of Plum pox potyvirus RNA. Virus Res. 10, 325–341 (1988).

    Article 

    Google Scholar
     

  • Gadhave, Okay. R., Gautam, S., Rasmussen, D. A. & Srinivasan, R. Aphid transmission of Potyvirus: the biggest plant-infecting RNA virus genus. Viruses 12, 773 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charon, J., Theil, S., Nicaise, V. & Michon, T. Protein intrinsic dysfunction throughout the Potyvirus genus: from proteome-wide evaluation to purposeful annotation. Mol. Biosyst. 12, 634–652 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DiMaio, F. et al. The molecular foundation for flexibility within the versatile filamentous plant viruses. Nat. Struct. Mol. Biol. 22, 642–644 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindenau, S., Winter, S. & Margaria, P. The amino-proximal area of the coat protein of Cucumber vein yellowing virus (household Potyviridae) impacts the an infection course of and whitefly transmission. Vegetation 10, 2771 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tairo, F. et al. Unravelling the genetic range of the three foremost viruses concerned in Candy Potato Virus Illness (SPVD), and its sensible implications. Mol. Plant Pathol. 6, 199–211 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dolja, V. V., Boyko, V. P., Agranovsky, A. A. & Koonin, E. V. Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: two households with distinct patterns of sequence and doubtless construction conservation. Virology 184, 79–86 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valle, M. Structural homology between nucleoproteins of ssRNA viruses. Subcell. Biochem. 88, 129–145 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jagadish, M. N., Huang, D. & Ward, C. W. Website-directed mutagenesis of a potyvirus coat protein and its meeting in Escherichia Coli. J. Gen. Virol. 74, 893–896 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malpica, C. A. et al. Structural characterization of Tobacco etch virus coat protein mutants. Arch. Virol. 149, 699–712 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Shukla, D. D., Strike, P. M., Tracy, S. L., Gough, Okay. H. & Ward, C. W. The N and C termini of the coat proteins of potyviruses are surface-located and the N terminus accommodates the foremost virus-specific epitopes. J. Gen. Virol. 69, 1497–1508 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Yuste-Calvo, C., Ibort, P., Sánchez, F. & Ponz, F. Turnip mosaic virus coat protein deletion mutants enable defining dispensable protein domains for ‘in planta’ eVLP formation. Viruses 12, 661 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steele, J. F. C. et al. Artificial plant virology for nanobiotechnology and nanomedicine. WIREs Nanomed. Nanobiotechnol. 9, e1447 (2017).

    Article 

    Google Scholar
     

  • Balke, I. & Zeltins, A. Latest advances in the usage of plant virus-like particles as vaccines. Viruses 12, 270 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mardanova, E. S. et al. Environment friendly transient expression of recombinant proteins in vegetation by the novel pEff vector based mostly on the genome of Potato virus X. Entrance. Plant Sci. 8, 247 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapila, J., De Rycke, R., Van Montagu, M. & Angenon, G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122, 101–108 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Leckie, B. M. & Neal Stewart, C. Agroinfiltration as a method for fast assays for evaluating candidate insect resistance transgenes in vegetation. Plant Cell Rep. 30, 325–334 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thuenemann, E. C. & Lomonossoff, G. P. Delivering cargo: Plant-based manufacturing of Bluetongue virus core-like and virus-like particles containing fluorescent proteins. Strategies Mol. Biol. 1776, 319–334 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pantoliano, M. W. et al. Excessive-density miniaturized thermal shift assays as a common technique for drug discovery. J. Biomol. Display. 6, 429–440 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zivanov, J. et al. New instruments for automated high-resolution cryo-EM construction willpower in RELION-3. eLife 7, e42166 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: Quick and correct defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, T. et al. Two particle-picking procedures for filamentous proteins: SPHIRE-crYOLO filament mode and SPHIRE-STRIPER. Acta Crystallogr. Sect. D. Struct. Biol. 76, 613–620 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the native decision of cryo-EM density maps. Nat. Strategies 11, 63–65 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 internet portal for protein modeling, prediction and evaluation. Nat. Protoc. 10, 845–858 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera – A visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and improvement of Coot. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66, 486–501 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular construction willpower utilizing X-rays, neutrons and electrons: current developments in Phenix. Acta Crystallogr. Sect. D. Struct. Biol. 75, 861–877 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Croll, T. I. ISOLDE: A bodily life like setting for mannequin constructing into low-resolution electron-density maps. Acta Crystallogr. Sect. D: Struct. Biol. 74, 519–530 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Krissinel, E. & Henrick, Okay. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here