An optimized round polymerase extension reaction-based methodology for practical evaluation of SARS-CoV-2 | Virology Journal

0
27


  • Palese P, Zheng H, Engelhardt OG, Pleschka S, Garcia-Sastre A. Destructive-strand RNA viruses: genetic engineering and purposes. Proc Natl Acad Sci U S A. 1996;93:11354–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aubry F, Nougairede A, Gould EA, de Lamballerie X. Flavivirus reverse genetic methods, development strategies and purposes: a historic perspective. Antiviral Res. 2015;114:67–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lauring AS, Jones JO, Andino R. Rationalizing the event of dwell attenuated virus vaccines. Nat Biotechnol. 2010;28:573–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Liu Y, Xia H, Zou J, Weaver SC, Swanson KA, Cai H, Cutler M, Cooper D, Muik A, et al. BNT162b2-elicited neutralization of B.1.617 and different SARS-CoV-2 variants. Nature. 2021;596:273–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Consortium C-GU, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19:409–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura I, Yamasoba D, Tamura T, Nao N, Suzuki T, Oda Y, Mitoma S, Ito J, Nasser H, Zahradnik J, et al. Virological traits of the SARS-CoV-2 omicron BA.2 subvariants, together with BA.4 and BA.5. Cell. 2022;185(3992–4007):e3916.


    Google Scholar
     

  • Yamasoba D, Kimura I, Nasser H, Morioka Y, Nao N, Ito J, Uriu Okay, Tsuda M, Zahradnik J, Shirakawa Okay, et al. Virological traits of the SARS-CoV-2 omicron BA.2 spike. Cell. 2022;185(2103–2115):e2119.


    Google Scholar
     

  • Stobart CC, Moore ML. RNA virus reverse genetics and vaccine design. Viruses. 2014;6:2531–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu B, Guo H, Zhou P, Shi ZL. Traits of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19:141–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • V’Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19:155–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23:3–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malone B, Urakova N, Snijder EJ, Campbell EA. Buildings and features of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol. 2022;23:21–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu G, Gack MU. Insights into pandemic respiratory viruses: manipulation of the antiviral interferon response by SARS-CoV-2 and influenza A virus. Curr Opin Immunol. 2022;78:102252.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diamond MS, Kanneganti TD. Innate immunity: the primary line of protection in opposition to SARS-CoV-2. Nat Immunol. 2022;23:165–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almazan F, Dediego ML, Galan C, Escors D, Alvarez E, Ortego J, Sola I, Zuniga S, Alonso S, Moreno JL, et al. Development of a extreme acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to check coronavirus RNA synthesis. J Virol. 2006;80:10900–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS. Reverse genetics with a full-length infectious cDNA of extreme acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2003;100:12995–3000.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD, Graham RL, Swanstrom J, Bove PF, Kim JD, et al. Reverse genetics with a full-length infectious cDNA of the center east respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2013;110:16157–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terada Y, Kuroda Y, Morikawa S, Matsuura Y, Maeda Okay, Kamitani W. Institution of a virulent full-length cDNA clone for sort I feline coronavirus pressure C3663. J Virol. 2019;93:e01208-19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrmann A, Jungnickl D, Cordsmeier A, Peter AS, Uberla Okay, Ensser A. Cloning of a passage-free SARS-CoV-2 genome and mutagenesis utilizing crimson recombination. Int J Mol Sci. 2021;22:10188.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thi Nhu Thao T, Labroussaa F, Ebert N, V’Kovski P, Stalder H, Portmann J, Kelly J, Steiner S, Holwerda M, Kratzel A, et al. Fast reconstruction of SARS-CoV-2 utilizing an artificial genomics platform. Nature. 2020;582:561–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie X, Muruato A, Lokugamage KG, Narayanan Okay, Zhang X, Zou J, Liu J, Schindewolf C, Bopp NE, Aguilar PV, et al. An Infectious cDNA Clone of SARS-CoV-2. Cell Host Microbe. 2020;27(841–848):e843.


    Google Scholar
     

  • Ye C, Chiem Okay, Park JG, Oladunni F, Platt RN 2nd, Anderson T, Almazan F, de la Torre JC, Martinez-Sobrido L. Rescue of SARS-CoV-2 from a single bacterial synthetic chromosome. MBio. 2020;11:e02168-20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rihn SJ, Deserves A, Bakshi S, Turnbull ML, Wickenhagen A, Alexander AJT, Baillie C, Brennan B, Brown F, Brunker Okay, et al. A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 analysis. PLoS Biol. 2021;19:e3001091.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edmonds J, van Grinsven E, Prow N, Bosco-Lauth A, Brault AC, Bowen RA, Corridor RA, Khromykh AA. A novel bacterium-free methodology for era of flavivirus infectious DNA by round polymerase extension response permits correct recapitulation of viral heterogeneity. J Virol. 2013;87:2367–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amarilla AA, Sng JDJ, Parry R, Deerain JM, Potter JR, Setoh YX, Rawle DJ, Le TT, Modhiran N, Wang X, et al. A flexible reverse genetics platform for SARS-CoV-2 and different positive-strand RNA viruses. Nat Commun. 2021;12:3431.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torii S, Ono C, Suzuki R, Morioka Y, Anzai I, Fauzyah Y, Maeda Y, Kamitani W, Fukuhara T, Matsuura Y. Institution of a reverse genetics system for SARS-CoV-2 utilizing round polymerase extension response. Cell Rep. 2021;35:109014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quan J, Tian J. Round polymerase extension cloning of advanced gene libraries and pathways. PLoS ONE. 2009;4:e6441.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia Y, Chu W, Qi Q, Xun L. New insights into the QuikChange course of information the usage of Phusion DNA polymerase for site-directed mutagenesis. Nucleic Acids Res. 2015;43:e12.

    Article 
    PubMed 

    Google Scholar
     

  • Decroly E, Ferron F, Lescar J, Canard B. Standard and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol. 2011;10:51–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radecke F, Spielhofer P, Schneider H, Kaelin Okay, Huber M, Dotsch C, Christiansen G, Billeter MA. Rescue of measles viruses from cloned DNA. EMBO J. 1995;14:5773–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A. Rescue of influenza A virus from recombinant DNA. J Virol. 1999;73:9679–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agapov A, Olina A, Kulbachinskiy A. RNA polymerase pausing, stalling and bypass throughout transcription of broken DNA: from molecular foundation to practical penalties. Nucleic Acids Res. 2022;50:3018–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu H, Chan JF, Yuen TT, Shuai H, Yuan S, Wang Y, Hu B, Yip CC, Tsang JO, Huang X, et al. Comparative tropism, replication kinetics, and cell harm profiling of SARS-CoV-2 and SARS-CoV with implications for medical manifestations, transmissibility, and laboratory research of COVID-19: an observational research. Lancet Microbe. 2020;1:e14–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson BA, Xie X, Bailey AL, Kalveram B, Lokugamage KG, Muruato A, Zou J, Zhang X, Juelich T, Smith JK, et al. Lack of furin cleavage web site attenuates SARS-CoV-2 pathogenesis. Nature. 2021;591:293–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osada N, Kohara A, Yamaji T, Hirayama N, Kasai F, Sekizuka T, Kuroda M, Hanada Okay. The genome panorama of the African inexperienced monkey kidney-derived vero cell line. DNA Res. 2014;21:673–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin D, Mukherjee R, Grewe D, Bojkova D, Baek Okay, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, et al. Papain-like protease regulates SARS-CoV-2 viral unfold and innate immunity. Nature. 2020;587:657–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu G, Lee JH, Parker ZM, Acharya D, Chiang JJ, van Gent M, Riedl W, Davis-Gardner ME, Wies E, Chiang C, Gack MU. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat Microbiol. 2021;6:467–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eggermont J, Proudfoot NJ. Poly(A) alerts and transcriptional pause websites mix to stop interference between RNA polymerase II promoters. EMBO J. 1993;12:2539–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen DY, Chin CV, Kenney D, Tavares AH, Khan N, Conway HL, Liu G, Choudhary MC, Gertje HP, O’Connell AK, et al. Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation. Nature. 2023;615:143–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ricardo-Lax I, Luna JM, Thao TTN, Le Pen J, Yu Y, Hoffmann HH, Schneider WM, Razooky BS, Fernandez-Martinez J, Schmidt F, et al. Replication and single-cycle supply of SARS-CoV-2 replicons. Science. 2021;374:1099–106.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graham RL, Deming DJ, Deming ME, Yount BL, Baric RS. Analysis of a recombination-resistant coronavirus as a broadly relevant, quickly implementable vaccine platform. Commun Biol. 2018;1:179.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pannu J, Sandbrink JB, Watson M, Palmer MJ, Relman DA. Protocols and dangers: when much less is extra. Nat Protoc. 2022;17:1–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie X, Lokugamage KG, Zhang X, Vu MN, Muruato AE, Menachery VD, Shi PY. Engineering SARS-CoV-2 utilizing a reverse genetic system. Nat Protoc. 2021;16:1761–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here